splade-distilbert-base-uncased trained on MS MARCO triplets
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the msmarco dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl")
# Run inference
queries = [
"canine ultrasound cost",
]
documents = [
'VetInfo indicates that any type of canine ultrasound costs anywhere from $300 to $500 depending on what region of the country you live in and whether or not a veterinarian or a technician performs the procedure.',
'1 Lymphoma, the most common canine cancer, usually requires only chemotherapy and its cost can come up to be around $450 to $500. 2 Osteosarcoma, another type of canine cancer, is usually treated with chemotherapy along with amputation surgery.3 This type of chemotherapy treatment costs approximately $450.nother factor is the type of drugs used in the process. The size of the dog that needs to undergo chemotherapy can also impact the cost. Even a dog very small in size with a single cancerous lesion can cost $200 for chemotherapy, while the same problem on a larger breed could cost more than $1,000 a month.',
'Plant Life. There are many different plants in the rain forest. Some of the plants include vines, bromeliads, the passion fruit plant and the Victorian water lily. Vines in the rainforest can be as thick as the average human average human body and some can grow to be 3,000 ft long.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[33.7473, 25.6638, 0.2965]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.38 | 0.38 | 0.52 | 0.26 | 0.76 | 0.8 | 0.32 | 0.9 | 0.84 | 0.44 | 0.12 | 0.54 | 0.6531 |
dot_accuracy@3 | 0.66 | 0.54 | 0.7 | 0.46 | 0.88 | 0.9 | 0.54 | 0.96 | 0.94 | 0.56 | 0.44 | 0.64 | 0.8367 |
dot_accuracy@5 | 0.72 | 0.58 | 0.72 | 0.58 | 0.88 | 0.96 | 0.6 | 0.96 | 0.96 | 0.62 | 0.54 | 0.74 | 0.898 |
dot_accuracy@10 | 0.86 | 0.62 | 0.78 | 0.7 | 0.9 | 0.98 | 0.7 | 0.96 | 0.96 | 0.76 | 0.72 | 0.78 | 0.9796 |
dot_precision@1 | 0.38 | 0.38 | 0.52 | 0.26 | 0.76 | 0.8 | 0.32 | 0.9 | 0.84 | 0.44 | 0.12 | 0.54 | 0.6531 |
dot_precision@3 | 0.22 | 0.3667 | 0.2333 | 0.16 | 0.6067 | 0.3067 | 0.24 | 0.52 | 0.36 | 0.2733 | 0.1467 | 0.2333 | 0.6122 |
dot_precision@5 | 0.144 | 0.328 | 0.144 | 0.124 | 0.584 | 0.204 | 0.172 | 0.324 | 0.224 | 0.224 | 0.108 | 0.16 | 0.5796 |
dot_precision@10 | 0.086 | 0.266 | 0.082 | 0.094 | 0.514 | 0.104 | 0.106 | 0.172 | 0.122 | 0.162 | 0.072 | 0.086 | 0.5041 |
dot_recall@1 | 0.38 | 0.0218 | 0.5 | 0.1317 | 0.0886 | 0.7667 | 0.1621 | 0.45 | 0.774 | 0.0927 | 0.12 | 0.495 | 0.0458 |
dot_recall@3 | 0.66 | 0.0741 | 0.66 | 0.229 | 0.1745 | 0.8667 | 0.3618 | 0.78 | 0.8853 | 0.1697 | 0.44 | 0.615 | 0.1279 |
dot_recall@5 | 0.72 | 0.0936 | 0.68 | 0.2697 | 0.2491 | 0.9333 | 0.4036 | 0.81 | 0.902 | 0.2297 | 0.54 | 0.715 | 0.1953 |
dot_recall@10 | 0.86 | 0.1197 | 0.75 | 0.3687 | 0.3582 | 0.9433 | 0.4941 | 0.86 | 0.93 | 0.3307 | 0.72 | 0.76 | 0.3217 |
dot_ndcg@10 | 0.6227 | 0.3145 | 0.64 | 0.2935 | 0.6321 | 0.8746 | 0.3856 | 0.8341 | 0.8912 | 0.3267 | 0.4019 | 0.6395 | 0.5553 |
dot_mrr@10 | 0.5469 | 0.4677 | 0.6204 | 0.381 | 0.8133 | 0.8663 | 0.4343 | 0.9267 | 0.8917 | 0.53 | 0.3024 | 0.6164 | 0.7593 |
dot_map@100 | 0.5547 | 0.1298 | 0.6045 | 0.2226 | 0.4903 | 0.8476 | 0.321 | 0.783 | 0.874 | 0.2468 | 0.3153 | 0.6051 | 0.4021 |
query_active_dims | 23.62 | 18.78 | 26.94 | 52.7 | 22.98 | 41.62 | 22.68 | 43.14 | 21.78 | 40.18 | 142.1 | 54.24 | 20.5306 |
query_sparsity_ratio | 0.9992 | 0.9994 | 0.9991 | 0.9983 | 0.9992 | 0.9986 | 0.9993 | 0.9986 | 0.9993 | 0.9987 | 0.9953 | 0.9982 | 0.9993 |
corpus_active_dims | 86.9286 | 164.7944 | 109.7591 | 152.8175 | 103.2382 | 154.9832 | 89.7392 | 108.2432 | 24.8411 | 145.2197 | 133.5271 | 172.6595 | 106.1772 |
corpus_sparsity_ratio | 0.9972 | 0.9946 | 0.9964 | 0.995 | 0.9966 | 0.9949 | 0.9971 | 0.9965 | 0.9992 | 0.9952 | 0.9956 | 0.9943 | 0.9965 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4267 |
dot_accuracy@3 | 0.6333 |
dot_accuracy@5 | 0.6733 |
dot_accuracy@10 | 0.7533 |
dot_precision@1 | 0.4267 |
dot_precision@3 | 0.2733 |
dot_precision@5 | 0.2053 |
dot_precision@10 | 0.1447 |
dot_recall@1 | 0.3006 |
dot_recall@3 | 0.4647 |
dot_recall@5 | 0.4979 |
dot_recall@10 | 0.5766 |
dot_ndcg@10 | 0.5258 |
dot_mrr@10 | 0.545 |
dot_map@100 | 0.4297 |
query_active_dims | 23.1133 |
query_sparsity_ratio | 0.9992 |
corpus_active_dims | 113.3954 |
corpus_sparsity_ratio | 0.9963 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.5318 |
dot_accuracy@3 | 0.6967 |
dot_accuracy@5 | 0.7506 |
dot_accuracy@10 | 0.823 |
dot_precision@1 | 0.5318 |
dot_precision@3 | 0.3291 |
dot_precision@5 | 0.2554 |
dot_precision@10 | 0.1823 |
dot_recall@1 | 0.3099 |
dot_recall@3 | 0.4649 |
dot_recall@5 | 0.5186 |
dot_recall@10 | 0.6013 |
dot_ndcg@10 | 0.5702 |
dot_mrr@10 | 0.6274 |
dot_map@100 | 0.4921 |
query_active_dims | 40.8998 |
query_sparsity_ratio | 0.9987 |
corpus_active_dims | 112.7496 |
corpus_sparsity_ratio | 0.9963 |
Training Details
Training Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 90,000 training samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 4 tokens
- mean: 9.1 tokens
- max: 30 tokens
- min: 24 tokens
- mean: 79.91 tokens
- max: 218 tokens
- min: 22 tokens
- mean: 77.09 tokens
- max: 256 tokens
- Samples:
query positive negative when do manga complete editions
Volumes 9 and 10 the Sailor Moon Manga Complete Editions are now out. Last week, March 25th, volumes 9 and 10 of the Sailor Moon Manga Complete Editions were released in Japan. Volume 9 features Endymion and Serenity on the cover while volume 10 features all 10 Sailor Guardians.
Destiny: The Taken King will be released in standard download, collectorâs edition download, and both âCollectorâsâ and âLegendaryâ game disc editions on September 15, 2015.
the define of homograph
LINK / CITE ADD TO WORD LIST. noun. The definition of a homograph is a word that is spelled like another word or other words, but has a different meaning and sometimes sounds different. An example of a homograph is evening, which is the time of day after the sun has set or making something level or flat.
As verbs the difference between describe and define. is that describe is to represent in words while define is to determine. As a noun define is. (computing
what is a cv in resume writing
Curriculum Vitae (CV) is Latin for âcourse of life.â In contrast, resume is French for âsummary.â Both CVs & Resumes: 1 Are tailored for the specific job/company you are applying to. 2 Should represent you as the best qualified candidate. 3 Are used to get you an interview. Do not usually include personal interests.
Resume Samples » Resume Objective » Legal Resume Objective » Legal Assistant Resume Objective. Job Description: Legal assistant is responsible to manage and handle various activities of legal department. Preparing legal documents such as contracts, wills and appeals.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 0.001, "lambda_query": 5e-05 }
Evaluation Dataset
msmarco
- Dataset: msmarco at 9e329ed
- Size: 10,000 evaluation samples
- Columns:
query
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
query positive negative type string string string details - min: 5 tokens
- mean: 9.24 tokens
- max: 53 tokens
- min: 13 tokens
- mean: 80.9 tokens
- max: 204 tokens
- min: 17 tokens
- mean: 78.24 tokens
- max: 234 tokens
- Samples:
query positive negative the largest vietnamese population in the united states is in
The largest number of Vietnamese outside Vietnam is in Orange County, California (184,153, or 6.1 percent of the county's population), followed by Los Angeles and Santa Clara counties; the three counties accounted for 26 percent of the Vietnamese immigrant population in the United States.
Population by Place in the United States There are 29,257 places in the United States. This section compares Hibbing to the 50 most populous places in the United States. The least populous of the compared places has a population of 371,267.
how many calories in a tablespoon of flaxseed
Calorie Content. A 2-tablespoon serving of ground flaxseed has about 75 calories, according to the U.S. Department of Agriculture. These calories consist of 2.6 grams of protein, 4 grams of carbohydrates -- almost all of which is fiber -- and 6 grams of fat.
You can also use flaxseed meal to replace an egg. Use 1 tablespoon flaxseed meal and 3 tablespoons water. You can replace up to two eggs in a recipe in this manner, but do not use flaxseed meal as an egg replacement if you are already using it as an oil replacement. Flaxseed has many health benefits.
who wrote the house of seven gables
The author of The House Of Seven Gables is Nathaniel Hawthorne.
Abigail Adams Wrote To John In 1776: Remember The Ladies Or We'll Rebel Adams wrote a feminist letter to her husband just before U.S. independence.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "lambda_corpus": 0.001, "lambda_query": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0178 | 100 | 173.8874 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0356 | 200 | 11.8803 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0533 | 300 | 1.0264 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0711 | 400 | 0.3923 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0889 | 500 | 0.32 | 0.2369 | 0.4932 | 0.3001 | 0.5819 | 0.4584 | - | - | - | - | - | - | - | - | - | - |
0.1067 | 600 | 0.2483 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1244 | 700 | 0.28 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1422 | 800 | 0.2095 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.16 | 900 | 0.2093 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1778 | 1000 | 0.1636 | 0.1898 | 0.6051 | 0.2845 | 0.6124 | 0.5006 | - | - | - | - | - | - | - | - | - | - |
0.1956 | 1100 | 0.1661 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2133 | 1200 | 0.1964 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2311 | 1300 | 0.1937 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2489 | 1400 | 0.1771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2667 | 1500 | 0.1643 | 0.1549 | 0.5868 | 0.3176 | 0.5769 | 0.4938 | - | - | - | - | - | - | - | - | - | - |
0.2844 | 1600 | 0.1987 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3022 | 1700 | 0.178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.32 | 1800 | 0.1227 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3378 | 1900 | 0.1478 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3556 | 2000 | 0.1502 | 0.1563 | 0.6249 | 0.3309 | 0.6088 | 0.5215 | - | - | - | - | - | - | - | - | - | - |
0.3733 | 2100 | 0.1623 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3911 | 2200 | 0.1703 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4089 | 2300 | 0.1804 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4267 | 2400 | 0.121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4444 | 2500 | 0.1451 | 0.1325 | 0.5620 | 0.3233 | 0.6197 | 0.5017 | - | - | - | - | - | - | - | - | - | - |
0.4622 | 2600 | 0.1609 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.48 | 2700 | 0.1415 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4978 | 2800 | 0.1555 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5156 | 2900 | 0.1581 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5333 | 3000 | 0.1351 | 0.1546 | 0.5901 | 0.3187 | 0.6299 | 0.5129 | - | - | - | - | - | - | - | - | - | - |
0.5511 | 3100 | 0.1308 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5689 | 3200 | 0.1313 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5867 | 3300 | 0.1248 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6044 | 3400 | 0.1295 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6222 | 3500 | 0.1398 | 0.1449 | 0.6096 | 0.3285 | 0.5975 | 0.5119 | - | - | - | - | - | - | - | - | - | - |
0.64 | 3600 | 0.1105 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6578 | 3700 | 0.0911 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6756 | 3800 | 0.1683 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6933 | 3900 | 0.1202 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 4000 | 0.135 | 0.1592 | 0.5989 | 0.3109 | 0.6460 | 0.5186 | - | - | - | - | - | - | - | - | - | - |
0.7289 | 4100 | 0.1205 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7467 | 4200 | 0.1432 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7644 | 4300 | 0.105 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7822 | 4400 | 0.1028 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8 | 4500 | 0.1386 | 0.1383 | 0.5859 | 0.3084 | 0.6276 | 0.5073 | - | - | - | - | - | - | - | - | - | - |
0.8178 | 4600 | 0.1068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8356 | 4700 | 0.1262 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8533 | 4800 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8711 | 4900 | 0.1331 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8889 | 5000 | 0.1436 | 0.1279 | 0.6261 | 0.3136 | 0.6314 | 0.5237 | - | - | - | - | - | - | - | - | - | - |
0.9067 | 5100 | 0.1182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9244 | 5200 | 0.1379 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9422 | 5300 | 0.1343 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.96 | 5400 | 0.1475 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9778 | 5500 | 0.0988 | 0.1311 | 0.6227 | 0.3145 | 0.64 | 0.5258 | - | - | - | - | - | - | - | - | - | - |
0.9956 | 5600 | 0.1072 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.6227 | 0.3145 | 0.6400 | 0.5702 | 0.2935 | 0.6321 | 0.8746 | 0.3856 | 0.8341 | 0.8912 | 0.3267 | 0.4019 | 0.6395 | 0.5553 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.138 kWh
- Carbon Emitted: 0.054 kg of CO2
- Hours Used: 0.458 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl
Base model
distilbert/distilbert-base-uncasedDataset used to train tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl
Evaluation results
- Dot Accuracy@1 on NanoMSMARCOself-reported0.380
- Dot Accuracy@3 on NanoMSMARCOself-reported0.660
- Dot Accuracy@5 on NanoMSMARCOself-reported0.720
- Dot Accuracy@10 on NanoMSMARCOself-reported0.860
- Dot Precision@1 on NanoMSMARCOself-reported0.380
- Dot Precision@3 on NanoMSMARCOself-reported0.220
- Dot Precision@5 on NanoMSMARCOself-reported0.144
- Dot Precision@10 on NanoMSMARCOself-reported0.086
- Dot Recall@1 on NanoMSMARCOself-reported0.380
- Dot Recall@3 on NanoMSMARCOself-reported0.660