splade-distilbert-base-uncased trained on MS MARCO triplets

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the msmarco dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl")
# Run inference
queries = [
    "canine ultrasound cost",
]
documents = [
    'VetInfo indicates that any type of canine ultrasound costs anywhere from $300 to $500 depending on what region of the country you live in and whether or not a veterinarian or a technician performs the procedure.',
    '1 Lymphoma, the most common canine cancer, usually requires only chemotherapy and its cost can come up to be around $450 to $500. 2  Osteosarcoma, another type of canine cancer, is usually treated with chemotherapy along with amputation surgery.3  This type of chemotherapy treatment costs approximately $450.nother factor is the type of drugs used in the process. The size of the dog that needs to undergo chemotherapy can also impact the cost. Even a dog very small in size with a single cancerous lesion can cost $200 for chemotherapy, while the same problem on a larger breed could cost more than $1,000 a month.',
    'Plant Life. There are many different plants in the rain forest. Some of the plants include vines, bromeliads, the passion fruit plant and the Victorian water lily. Vines in the rainforest can be as thick as the average human average human body and some can grow to be 3,000 ft long.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[33.7473, 25.6638,  0.2965]])

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.38 0.38 0.52 0.26 0.76 0.8 0.32 0.9 0.84 0.44 0.12 0.54 0.6531
dot_accuracy@3 0.66 0.54 0.7 0.46 0.88 0.9 0.54 0.96 0.94 0.56 0.44 0.64 0.8367
dot_accuracy@5 0.72 0.58 0.72 0.58 0.88 0.96 0.6 0.96 0.96 0.62 0.54 0.74 0.898
dot_accuracy@10 0.86 0.62 0.78 0.7 0.9 0.98 0.7 0.96 0.96 0.76 0.72 0.78 0.9796
dot_precision@1 0.38 0.38 0.52 0.26 0.76 0.8 0.32 0.9 0.84 0.44 0.12 0.54 0.6531
dot_precision@3 0.22 0.3667 0.2333 0.16 0.6067 0.3067 0.24 0.52 0.36 0.2733 0.1467 0.2333 0.6122
dot_precision@5 0.144 0.328 0.144 0.124 0.584 0.204 0.172 0.324 0.224 0.224 0.108 0.16 0.5796
dot_precision@10 0.086 0.266 0.082 0.094 0.514 0.104 0.106 0.172 0.122 0.162 0.072 0.086 0.5041
dot_recall@1 0.38 0.0218 0.5 0.1317 0.0886 0.7667 0.1621 0.45 0.774 0.0927 0.12 0.495 0.0458
dot_recall@3 0.66 0.0741 0.66 0.229 0.1745 0.8667 0.3618 0.78 0.8853 0.1697 0.44 0.615 0.1279
dot_recall@5 0.72 0.0936 0.68 0.2697 0.2491 0.9333 0.4036 0.81 0.902 0.2297 0.54 0.715 0.1953
dot_recall@10 0.86 0.1197 0.75 0.3687 0.3582 0.9433 0.4941 0.86 0.93 0.3307 0.72 0.76 0.3217
dot_ndcg@10 0.6227 0.3145 0.64 0.2935 0.6321 0.8746 0.3856 0.8341 0.8912 0.3267 0.4019 0.6395 0.5553
dot_mrr@10 0.5469 0.4677 0.6204 0.381 0.8133 0.8663 0.4343 0.9267 0.8917 0.53 0.3024 0.6164 0.7593
dot_map@100 0.5547 0.1298 0.6045 0.2226 0.4903 0.8476 0.321 0.783 0.874 0.2468 0.3153 0.6051 0.4021
query_active_dims 23.62 18.78 26.94 52.7 22.98 41.62 22.68 43.14 21.78 40.18 142.1 54.24 20.5306
query_sparsity_ratio 0.9992 0.9994 0.9991 0.9983 0.9992 0.9986 0.9993 0.9986 0.9993 0.9987 0.9953 0.9982 0.9993
corpus_active_dims 86.9286 164.7944 109.7591 152.8175 103.2382 154.9832 89.7392 108.2432 24.8411 145.2197 133.5271 172.6595 106.1772
corpus_sparsity_ratio 0.9972 0.9946 0.9964 0.995 0.9966 0.9949 0.9971 0.9965 0.9992 0.9952 0.9956 0.9943 0.9965

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4267
dot_accuracy@3 0.6333
dot_accuracy@5 0.6733
dot_accuracy@10 0.7533
dot_precision@1 0.4267
dot_precision@3 0.2733
dot_precision@5 0.2053
dot_precision@10 0.1447
dot_recall@1 0.3006
dot_recall@3 0.4647
dot_recall@5 0.4979
dot_recall@10 0.5766
dot_ndcg@10 0.5258
dot_mrr@10 0.545
dot_map@100 0.4297
query_active_dims 23.1133
query_sparsity_ratio 0.9992
corpus_active_dims 113.3954
corpus_sparsity_ratio 0.9963

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.5318
dot_accuracy@3 0.6967
dot_accuracy@5 0.7506
dot_accuracy@10 0.823
dot_precision@1 0.5318
dot_precision@3 0.3291
dot_precision@5 0.2554
dot_precision@10 0.1823
dot_recall@1 0.3099
dot_recall@3 0.4649
dot_recall@5 0.5186
dot_recall@10 0.6013
dot_ndcg@10 0.5702
dot_mrr@10 0.6274
dot_map@100 0.4921
query_active_dims 40.8998
query_sparsity_ratio 0.9987
corpus_active_dims 112.7496
corpus_sparsity_ratio 0.9963

Training Details

Training Dataset

msmarco

  • Dataset: msmarco at 9e329ed
  • Size: 90,000 training samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 4 tokens
    • mean: 9.1 tokens
    • max: 30 tokens
    • min: 24 tokens
    • mean: 79.91 tokens
    • max: 218 tokens
    • min: 22 tokens
    • mean: 77.09 tokens
    • max: 256 tokens
  • Samples:
    query positive negative
    when do manga complete editions Volumes 9 and 10 the Sailor Moon Manga Complete Editions are now out. Last week, March 25th, volumes 9 and 10 of the Sailor Moon Manga Complete Editions were released in Japan. Volume 9 features Endymion and Serenity on the cover while volume 10 features all 10 Sailor Guardians. Destiny: The Taken King will be released in standard download, collector’s edition download, and both “Collector’s” and “Legendary” game disc editions on September 15, 2015.
    the define of homograph LINK / CITE ADD TO WORD LIST. noun. The definition of a homograph is a word that is spelled like another word or other words, but has a different meaning and sometimes sounds different. An example of a homograph is evening, which is the time of day after the sun has set or making something level or flat. As verbs the difference between describe and define. is that describe is to represent in words while define is to determine. As a noun define is. (computing
    what is a cv in resume writing Curriculum Vitae (CV) is Latin for “course of life.” In contrast, resume is French for “summary.” Both CVs & Resumes: 1 Are tailored for the specific job/company you are applying to. 2 Should represent you as the best qualified candidate. 3 Are used to get you an interview. Do not usually include personal interests. Resume Samples » Resume Objective » Legal Resume Objective » Legal Assistant Resume Objective. Job Description: Legal assistant is responsible to manage and handle various activities of legal department. Preparing legal documents such as contracts, wills and appeals.
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.001,
        "lambda_query": 5e-05
    }
    

Evaluation Dataset

msmarco

  • Dataset: msmarco at 9e329ed
  • Size: 10,000 evaluation samples
  • Columns: query, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    query positive negative
    type string string string
    details
    • min: 5 tokens
    • mean: 9.24 tokens
    • max: 53 tokens
    • min: 13 tokens
    • mean: 80.9 tokens
    • max: 204 tokens
    • min: 17 tokens
    • mean: 78.24 tokens
    • max: 234 tokens
  • Samples:
    query positive negative
    the largest vietnamese population in the united states is in The largest number of Vietnamese outside Vietnam is in Orange County, California (184,153, or 6.1 percent of the county's population), followed by Los Angeles and Santa Clara counties; the three counties accounted for 26 percent of the Vietnamese immigrant population in the United States. Population by Place in the United States There are 29,257 places in the United States. This section compares Hibbing to the 50 most populous places in the United States. The least populous of the compared places has a population of 371,267.
    how many calories in a tablespoon of flaxseed Calorie Content. A 2-tablespoon serving of ground flaxseed has about 75 calories, according to the U.S. Department of Agriculture. These calories consist of 2.6 grams of protein, 4 grams of carbohydrates -- almost all of which is fiber -- and 6 grams of fat. You can also use flaxseed meal to replace an egg. Use 1 tablespoon flaxseed meal and 3 tablespoons water. You can replace up to two eggs in a recipe in this manner, but do not use flaxseed meal as an egg replacement if you are already using it as an oil replacement. Flaxseed has many health benefits.
    who wrote the house of seven gables The author of The House Of Seven Gables is Nathaniel Hawthorne. Abigail Adams Wrote To John In 1776: Remember The Ladies Or We'll Rebel Adams wrote a feminist letter to her husband just before U.S. independence.
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 0.001,
        "lambda_query": 5e-05
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0178 100 173.8874 - - - - - - - - - - - - - - -
0.0356 200 11.8803 - - - - - - - - - - - - - - -
0.0533 300 1.0264 - - - - - - - - - - - - - - -
0.0711 400 0.3923 - - - - - - - - - - - - - - -
0.0889 500 0.32 0.2369 0.4932 0.3001 0.5819 0.4584 - - - - - - - - - -
0.1067 600 0.2483 - - - - - - - - - - - - - - -
0.1244 700 0.28 - - - - - - - - - - - - - - -
0.1422 800 0.2095 - - - - - - - - - - - - - - -
0.16 900 0.2093 - - - - - - - - - - - - - - -
0.1778 1000 0.1636 0.1898 0.6051 0.2845 0.6124 0.5006 - - - - - - - - - -
0.1956 1100 0.1661 - - - - - - - - - - - - - - -
0.2133 1200 0.1964 - - - - - - - - - - - - - - -
0.2311 1300 0.1937 - - - - - - - - - - - - - - -
0.2489 1400 0.1771 - - - - - - - - - - - - - - -
0.2667 1500 0.1643 0.1549 0.5868 0.3176 0.5769 0.4938 - - - - - - - - - -
0.2844 1600 0.1987 - - - - - - - - - - - - - - -
0.3022 1700 0.178 - - - - - - - - - - - - - - -
0.32 1800 0.1227 - - - - - - - - - - - - - - -
0.3378 1900 0.1478 - - - - - - - - - - - - - - -
0.3556 2000 0.1502 0.1563 0.6249 0.3309 0.6088 0.5215 - - - - - - - - - -
0.3733 2100 0.1623 - - - - - - - - - - - - - - -
0.3911 2200 0.1703 - - - - - - - - - - - - - - -
0.4089 2300 0.1804 - - - - - - - - - - - - - - -
0.4267 2400 0.121 - - - - - - - - - - - - - - -
0.4444 2500 0.1451 0.1325 0.5620 0.3233 0.6197 0.5017 - - - - - - - - - -
0.4622 2600 0.1609 - - - - - - - - - - - - - - -
0.48 2700 0.1415 - - - - - - - - - - - - - - -
0.4978 2800 0.1555 - - - - - - - - - - - - - - -
0.5156 2900 0.1581 - - - - - - - - - - - - - - -
0.5333 3000 0.1351 0.1546 0.5901 0.3187 0.6299 0.5129 - - - - - - - - - -
0.5511 3100 0.1308 - - - - - - - - - - - - - - -
0.5689 3200 0.1313 - - - - - - - - - - - - - - -
0.5867 3300 0.1248 - - - - - - - - - - - - - - -
0.6044 3400 0.1295 - - - - - - - - - - - - - - -
0.6222 3500 0.1398 0.1449 0.6096 0.3285 0.5975 0.5119 - - - - - - - - - -
0.64 3600 0.1105 - - - - - - - - - - - - - - -
0.6578 3700 0.0911 - - - - - - - - - - - - - - -
0.6756 3800 0.1683 - - - - - - - - - - - - - - -
0.6933 3900 0.1202 - - - - - - - - - - - - - - -
0.7111 4000 0.135 0.1592 0.5989 0.3109 0.6460 0.5186 - - - - - - - - - -
0.7289 4100 0.1205 - - - - - - - - - - - - - - -
0.7467 4200 0.1432 - - - - - - - - - - - - - - -
0.7644 4300 0.105 - - - - - - - - - - - - - - -
0.7822 4400 0.1028 - - - - - - - - - - - - - - -
0.8 4500 0.1386 0.1383 0.5859 0.3084 0.6276 0.5073 - - - - - - - - - -
0.8178 4600 0.1068 - - - - - - - - - - - - - - -
0.8356 4700 0.1262 - - - - - - - - - - - - - - -
0.8533 4800 0.1182 - - - - - - - - - - - - - - -
0.8711 4900 0.1331 - - - - - - - - - - - - - - -
0.8889 5000 0.1436 0.1279 0.6261 0.3136 0.6314 0.5237 - - - - - - - - - -
0.9067 5100 0.1182 - - - - - - - - - - - - - - -
0.9244 5200 0.1379 - - - - - - - - - - - - - - -
0.9422 5300 0.1343 - - - - - - - - - - - - - - -
0.96 5400 0.1475 - - - - - - - - - - - - - - -
0.9778 5500 0.0988 0.1311 0.6227 0.3145 0.64 0.5258 - - - - - - - - - -
0.9956 5600 0.1072 - - - - - - - - - - - - - - -
-1 -1 - - 0.6227 0.3145 0.6400 0.5702 0.2935 0.6321 0.8746 0.3856 0.8341 0.8912 0.3267 0.4019 0.6395 0.5553
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.138 kWh
  • Carbon Emitted: 0.054 kg of CO2
  • Hours Used: 0.458 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
Downloads last month
10
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl

Finetuned
(8890)
this model

Dataset used to train tomaarsen/splade-distilbert-base-uncased-msmarco-mnrl

Evaluation results