tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
5809bf5 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 105.88726450328866
  energy_consumed: 0.27241245093487726
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.75
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 4
          type: NanoMSMARCO_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.12
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.16
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.26
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.34
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.12
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.05333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.052000000000000005
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.034
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.12
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.16
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.26
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.34
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.20848075322384305
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.16888095238095235
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.18291408151127517
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 4
          type: NanoNFCorpus_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.06
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.14
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.24
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.06
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.06000000000000001
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.068
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.064
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.0009459743220542356
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.003449821160051155
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.007601209053812086
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.014969691928058278
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.06420092741811712
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.12744444444444444
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.014642071302654571
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 4
          type: NanoNQ_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.04
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.08
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.16
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.26
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.04
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.026666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.032
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.026000000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.04
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.16
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.25
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.12446577906212845
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.08757936507936508
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.09936029341073244
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 4
          type: NanoBEIR_mean_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.07333333333333333
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.12666666666666668
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.22
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.3
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.07333333333333333
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.04666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.05066666666666667
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.04133333333333333
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.053648658107351414
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08114994038668372
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.14253373635127067
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.20165656397601942
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.13238248656802956
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.12796825396825398
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.09897214874155406
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 8
          type: NanoMSMARCO_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.14
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.32
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.14
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.064
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.042
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.24
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.32
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.42
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2597698452054917
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.21088888888888888
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.22093158927995368
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 8
          type: NanoNFCorpus_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.08
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.32
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.4
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.08
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08199999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.003534803921568628
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.01332319047951684
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.018603958472557434
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.027472535276451802
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.08639423970883567
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.16755555555555557
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.02734093319516609
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 8
          type: NanoNQ_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.08
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.44
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.08
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.07999999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.06000000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.046000000000000006
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.08
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.22
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.28
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.42
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2376977753947817
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1862142857142857
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.18701815429415725
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 8
          type: NanoBEIR_mean_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.10000000000000002
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.24
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.3133333333333333
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.42
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.10000000000000002
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.08888888888888886
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07466666666666667
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05666666666666667
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.07451160130718955
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.15777439682650563
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.2062013194908525
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.28915751175881726
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.19462062010303635
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.1882195767195767
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.14509689225642566
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 16
          type: NanoMSMARCO_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.22
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.48
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.58
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.22
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15999999999999998
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11599999999999999
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.22
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.48
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.58
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.45695469767923136
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.37962698412698415
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3855020346571363
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 16
          type: NanoNFCorpus_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.18
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.34
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.44
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.54
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.12399999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.006630871390546997
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.015107785892825198
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.023769342657046163
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.03915909301380926
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.134487928424105
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.28135714285714286
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.04034378873464851
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 16
          type: NanoNQ_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.22
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.32
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.36
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.22
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.10666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.07200000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.052000000000000005
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.22
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.33
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.48
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.33052122676463463
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2881904761904762
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2997157011386181
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 16
          type: NanoBEIR_mean_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.20666666666666667
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.38000000000000006
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.45999999999999996
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.58
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.20666666666666667
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13999999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11066666666666668
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.082
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14887695713018234
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.2650359286309417
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3112564475523487
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.4063863643379364
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.30732128428932365
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3163915343915344
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2418538415101343
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 32
          type: NanoMSMARCO_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.36
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.58
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.62
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.36
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.19333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.124
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.36
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.58
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.62
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5319469082007623
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.47833333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4895239579497892
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 32
          type: NanoNFCorpus_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.36
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.48
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.52
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.64
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.36
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.21999999999999997
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.172
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.015057828440744998
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.03195263461978998
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.051589014542877495
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.07035182595749563
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.21044771940181314
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4425476190476191
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.07089713098470313
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 32
          type: NanoNQ_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.28
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.52
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.62
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.28
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.13333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.066
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.37
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.47
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.59
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4160684104470306
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3762142857142857
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3702476731998177
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 32
          type: NanoBEIR_mean_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.3333333333333333
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.48666666666666664
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5533333333333333
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6533333333333333
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3333333333333333
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18888888888888888
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14933333333333335
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.10266666666666667
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.21168594281358166
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3273175448732633
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.38052967151429246
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.45345060865249853
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3861543460165353
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.43236507936507945
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.31022292071143664
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 64
          type: NanoMSMARCO_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.42
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.66
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.42
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13200000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.42
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.66
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.591232993639232
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5273015873015873
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5351182048005023
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 64
          type: NanoNFCorpus_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.32
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.52
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2933333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.252
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.236
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.020044789335191174
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.04526010398813148
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.05627084683228478
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.08933472256987589
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2628775829193256
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4175000000000001
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.10566929023749187
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 64
          type: NanoNQ_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.4
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.62
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.66
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.72
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.20666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.136
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07600000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.38
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.58
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.61
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.67
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5342140484753161
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5065555555555555
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.49683164821698605
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 64
          type: NanoBEIR_mean_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.38000000000000006
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5733333333333334
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6133333333333334
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7066666666666667
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.38000000000000006
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2333333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17333333333333334
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.13066666666666668
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.2733482631117304
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4084200346627105
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.44209028227742825
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5197782408566253
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4627748750112912
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.48378571428571426
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.37920638108499344
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 128
          type: NanoMSMARCO_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.34
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.64
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.68
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.34
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.21333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.136
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.34
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.64
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.68
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5730777373893381
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5008015873015873
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5127463554963555
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 128
          type: NanoNFCorpus_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.4
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.54
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.58
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.72
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.36666666666666664
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.308
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.276
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.04265347253746901
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08086072465767052
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.0941496797136197
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.13775131432237744
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.33199374875578674
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.48576984126984124
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.15090058991053457
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 128
          type: NanoNQ_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.44
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.64
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.68
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.78
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.44
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.22
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08199999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.41
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.6
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.64
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.73
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5797743501932063
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5520714285714285
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.533573558140474
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 128
          type: NanoBEIR_mean_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.3933333333333333
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6066666666666668
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6466666666666666
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7666666666666666
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3933333333333333
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19600000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.14600000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.26421782417915635
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4402869082192235
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.47138322657120657
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5559171047741258
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.494948612112777
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5128809523809523
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.39907350118245466
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO 256
          type: NanoMSMARCO_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.36
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.62
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.84
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.36
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.20666666666666667
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08399999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.36
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.62
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.7
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.84
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5934641617159162
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5158809523809523
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.5228335563036209
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus 256
          type: NanoNFCorpus_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.46
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.62
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.74
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.78
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.46
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.38666666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.364
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.29800000000000004
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.04750699466385613
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.08527169237328079
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.11543452383164411
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.1526866044864678
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.3632299338880757
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5608571428571427
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.16765768014542204
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ 256
          type: NanoNQ_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.56
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.76
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.82
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.56
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.24666666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08799999999999997
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.52
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.67
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.72
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.78
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.664653961269068
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6482222222222223
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6252713508893053
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean 256
          type: NanoBEIR_mean_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.46
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6466666666666666
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.7333333333333334
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8133333333333334
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.46
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27999999999999997
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.22133333333333335
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.15666666666666665
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.30916899822128535
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4584238974577603
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5118115079438813
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5908955348288226
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.54044935229102
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.5749867724867724
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.43858752911278276
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6570, 0.1768, 0.1651]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO_4 NanoNFCorpus_4 NanoNQ_4
cosine_accuracy@1 0.12 0.06 0.04
cosine_accuracy@3 0.16 0.14 0.08
cosine_accuracy@5 0.26 0.24 0.16
cosine_accuracy@10 0.34 0.3 0.26
cosine_precision@1 0.12 0.06 0.04
cosine_precision@3 0.0533 0.06 0.0267
cosine_precision@5 0.052 0.068 0.032
cosine_precision@10 0.034 0.064 0.026
cosine_recall@1 0.12 0.0009 0.04
cosine_recall@3 0.16 0.0034 0.08
cosine_recall@5 0.26 0.0076 0.16
cosine_recall@10 0.34 0.015 0.25
cosine_ndcg@10 0.2085 0.0642 0.1245
cosine_mrr@10 0.1689 0.1274 0.0876
cosine_map@100 0.1829 0.0146 0.0994
query_active_dims 4.0 4.0 4.0
query_sparsity_ratio 0.999 0.999 0.999
corpus_active_dims 4.0 4.0 4.0
corpus_sparsity_ratio 0.999 0.999 0.999

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_4
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 4
    }
    
Metric Value
cosine_accuracy@1 0.0733
cosine_accuracy@3 0.1267
cosine_accuracy@5 0.22
cosine_accuracy@10 0.3
cosine_precision@1 0.0733
cosine_precision@3 0.0467
cosine_precision@5 0.0507
cosine_precision@10 0.0413
cosine_recall@1 0.0536
cosine_recall@3 0.0811
cosine_recall@5 0.1425
cosine_recall@10 0.2017
cosine_ndcg@10 0.1324
cosine_mrr@10 0.128
cosine_map@100 0.099
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric NanoMSMARCO_8 NanoNFCorpus_8 NanoNQ_8
cosine_accuracy@1 0.14 0.08 0.08
cosine_accuracy@3 0.24 0.24 0.24
cosine_accuracy@5 0.32 0.32 0.3
cosine_accuracy@10 0.42 0.4 0.44
cosine_precision@1 0.14 0.08 0.08
cosine_precision@3 0.08 0.1067 0.08
cosine_precision@5 0.064 0.1 0.06
cosine_precision@10 0.042 0.082 0.046
cosine_recall@1 0.14 0.0035 0.08
cosine_recall@3 0.24 0.0133 0.22
cosine_recall@5 0.32 0.0186 0.28
cosine_recall@10 0.42 0.0275 0.42
cosine_ndcg@10 0.2598 0.0864 0.2377
cosine_mrr@10 0.2109 0.1676 0.1862
cosine_map@100 0.2209 0.0273 0.187
query_active_dims 8.0 8.0 8.0
query_sparsity_ratio 0.998 0.998 0.998
corpus_active_dims 8.0 8.0 8.0
corpus_sparsity_ratio 0.998 0.998 0.998

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_8
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 8
    }
    
Metric Value
cosine_accuracy@1 0.1
cosine_accuracy@3 0.24
cosine_accuracy@5 0.3133
cosine_accuracy@10 0.42
cosine_precision@1 0.1
cosine_precision@3 0.0889
cosine_precision@5 0.0747
cosine_precision@10 0.0567
cosine_recall@1 0.0745
cosine_recall@3 0.1578
cosine_recall@5 0.2062
cosine_recall@10 0.2892
cosine_ndcg@10 0.1946
cosine_mrr@10 0.1882
cosine_map@100 0.1451
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric NanoMSMARCO_16 NanoNFCorpus_16 NanoNQ_16
cosine_accuracy@1 0.22 0.18 0.22
cosine_accuracy@3 0.48 0.34 0.32
cosine_accuracy@5 0.58 0.44 0.36
cosine_accuracy@10 0.7 0.54 0.5
cosine_precision@1 0.22 0.18 0.22
cosine_precision@3 0.16 0.1533 0.1067
cosine_precision@5 0.116 0.144 0.072
cosine_precision@10 0.07 0.124 0.052
cosine_recall@1 0.22 0.0066 0.22
cosine_recall@3 0.48 0.0151 0.3
cosine_recall@5 0.58 0.0238 0.33
cosine_recall@10 0.7 0.0392 0.48
cosine_ndcg@10 0.457 0.1345 0.3305
cosine_mrr@10 0.3796 0.2814 0.2882
cosine_map@100 0.3855 0.0403 0.2997
query_active_dims 16.0 16.0 16.0
query_sparsity_ratio 0.9961 0.9961 0.9961
corpus_active_dims 16.0 16.0 16.0
corpus_sparsity_ratio 0.9961 0.9961 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 16
    }
    
Metric Value
cosine_accuracy@1 0.2067
cosine_accuracy@3 0.38
cosine_accuracy@5 0.46
cosine_accuracy@10 0.58
cosine_precision@1 0.2067
cosine_precision@3 0.14
cosine_precision@5 0.1107
cosine_precision@10 0.082
cosine_recall@1 0.1489
cosine_recall@3 0.265
cosine_recall@5 0.3113
cosine_recall@10 0.4064
cosine_ndcg@10 0.3073
cosine_mrr@10 0.3164
cosine_map@100 0.2419
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric NanoMSMARCO_32 NanoNFCorpus_32 NanoNQ_32
cosine_accuracy@1 0.36 0.36 0.28
cosine_accuracy@3 0.58 0.48 0.4
cosine_accuracy@5 0.62 0.52 0.52
cosine_accuracy@10 0.7 0.64 0.62
cosine_precision@1 0.36 0.36 0.28
cosine_precision@3 0.1933 0.24 0.1333
cosine_precision@5 0.124 0.22 0.104
cosine_precision@10 0.07 0.172 0.066
cosine_recall@1 0.36 0.0151 0.26
cosine_recall@3 0.58 0.032 0.37
cosine_recall@5 0.62 0.0516 0.47
cosine_recall@10 0.7 0.0704 0.59
cosine_ndcg@10 0.5319 0.2104 0.4161
cosine_mrr@10 0.4783 0.4425 0.3762
cosine_map@100 0.4895 0.0709 0.3702
query_active_dims 32.0 32.0 32.0
query_sparsity_ratio 0.9922 0.9922 0.9922
corpus_active_dims 32.0 32.0 32.0
corpus_sparsity_ratio 0.9922 0.9922 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_32
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 32
    }
    
Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.4867
cosine_accuracy@5 0.5533
cosine_accuracy@10 0.6533
cosine_precision@1 0.3333
cosine_precision@3 0.1889
cosine_precision@5 0.1493
cosine_precision@10 0.1027
cosine_recall@1 0.2117
cosine_recall@3 0.3273
cosine_recall@5 0.3805
cosine_recall@10 0.4535
cosine_ndcg@10 0.3862
cosine_mrr@10 0.4324
cosine_map@100 0.3102
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric NanoMSMARCO_64 NanoNFCorpus_64 NanoNQ_64
cosine_accuracy@1 0.42 0.32 0.4
cosine_accuracy@3 0.6 0.5 0.62
cosine_accuracy@5 0.66 0.52 0.66
cosine_accuracy@10 0.8 0.6 0.72
cosine_precision@1 0.42 0.32 0.4
cosine_precision@3 0.2 0.2933 0.2067
cosine_precision@5 0.132 0.252 0.136
cosine_precision@10 0.08 0.236 0.076
cosine_recall@1 0.42 0.02 0.38
cosine_recall@3 0.6 0.0453 0.58
cosine_recall@5 0.66 0.0563 0.61
cosine_recall@10 0.8 0.0893 0.67
cosine_ndcg@10 0.5912 0.2629 0.5342
cosine_mrr@10 0.5273 0.4175 0.5066
cosine_map@100 0.5351 0.1057 0.4968
query_active_dims 64.0 64.0 64.0
query_sparsity_ratio 0.9844 0.9844 0.9844
corpus_active_dims 64.0 64.0 64.0
corpus_sparsity_ratio 0.9844 0.9844 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 64
    }
    
Metric Value
cosine_accuracy@1 0.38
cosine_accuracy@3 0.5733
cosine_accuracy@5 0.6133
cosine_accuracy@10 0.7067
cosine_precision@1 0.38
cosine_precision@3 0.2333
cosine_precision@5 0.1733
cosine_precision@10 0.1307
cosine_recall@1 0.2733
cosine_recall@3 0.4084
cosine_recall@5 0.4421
cosine_recall@10 0.5198
cosine_ndcg@10 0.4628
cosine_mrr@10 0.4838
cosine_map@100 0.3792
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric NanoMSMARCO_128 NanoNFCorpus_128 NanoNQ_128
cosine_accuracy@1 0.34 0.4 0.44
cosine_accuracy@3 0.64 0.54 0.64
cosine_accuracy@5 0.68 0.58 0.68
cosine_accuracy@10 0.8 0.72 0.78
cosine_precision@1 0.34 0.4 0.44
cosine_precision@3 0.2133 0.3667 0.22
cosine_precision@5 0.136 0.308 0.144
cosine_precision@10 0.08 0.276 0.082
cosine_recall@1 0.34 0.0427 0.41
cosine_recall@3 0.64 0.0809 0.6
cosine_recall@5 0.68 0.0941 0.64
cosine_recall@10 0.8 0.1378 0.73
cosine_ndcg@10 0.5731 0.332 0.5798
cosine_mrr@10 0.5008 0.4858 0.5521
cosine_map@100 0.5127 0.1509 0.5336
query_active_dims 128.0 128.0 128.0
query_sparsity_ratio 0.9688 0.9688 0.9688
corpus_active_dims 128.0 128.0 128.0
corpus_sparsity_ratio 0.9688 0.9688 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_128
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 128
    }
    
Metric Value
cosine_accuracy@1 0.3933
cosine_accuracy@3 0.6067
cosine_accuracy@5 0.6467
cosine_accuracy@10 0.7667
cosine_precision@1 0.3933
cosine_precision@3 0.2667
cosine_precision@5 0.196
cosine_precision@10 0.146
cosine_recall@1 0.2642
cosine_recall@3 0.4403
cosine_recall@5 0.4714
cosine_recall@10 0.5559
cosine_ndcg@10 0.4949
cosine_mrr@10 0.5129
cosine_map@100 0.3991
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric NanoMSMARCO_256 NanoNFCorpus_256 NanoNQ_256
cosine_accuracy@1 0.36 0.46 0.56
cosine_accuracy@3 0.62 0.62 0.7
cosine_accuracy@5 0.7 0.74 0.76
cosine_accuracy@10 0.84 0.78 0.82
cosine_precision@1 0.36 0.46 0.56
cosine_precision@3 0.2067 0.3867 0.2467
cosine_precision@5 0.14 0.364 0.16
cosine_precision@10 0.084 0.298 0.088
cosine_recall@1 0.36 0.0475 0.52
cosine_recall@3 0.62 0.0853 0.67
cosine_recall@5 0.7 0.1154 0.72
cosine_recall@10 0.84 0.1527 0.78
cosine_ndcg@10 0.5935 0.3632 0.6647
cosine_mrr@10 0.5159 0.5609 0.6482
cosine_map@100 0.5228 0.1677 0.6253
query_active_dims 256.0 256.0 256.0
query_sparsity_ratio 0.9375 0.9375 0.9375
corpus_active_dims 256.0 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 256
    }
    
Metric Value
cosine_accuracy@1 0.46
cosine_accuracy@3 0.6467
cosine_accuracy@5 0.7333
cosine_accuracy@10 0.8133
cosine_precision@1 0.46
cosine_precision@3 0.28
cosine_precision@5 0.2213
cosine_precision@10 0.1567
cosine_recall@1 0.3092
cosine_recall@3 0.4584
cosine_recall@5 0.5118
cosine_recall@10 0.5909
cosine_ndcg@10 0.5404
cosine_mrr@10 0.575
cosine_map@100 0.4386
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_4_cosine_ndcg@10 NanoNFCorpus_4_cosine_ndcg@10 NanoNQ_4_cosine_ndcg@10 NanoBEIR_mean_4_cosine_ndcg@10 NanoMSMARCO_8_cosine_ndcg@10 NanoNFCorpus_8_cosine_ndcg@10 NanoNQ_8_cosine_ndcg@10 NanoBEIR_mean_8_cosine_ndcg@10 NanoMSMARCO_16_cosine_ndcg@10 NanoNFCorpus_16_cosine_ndcg@10 NanoNQ_16_cosine_ndcg@10 NanoBEIR_mean_16_cosine_ndcg@10 NanoMSMARCO_32_cosine_ndcg@10 NanoNFCorpus_32_cosine_ndcg@10 NanoNQ_32_cosine_ndcg@10 NanoBEIR_mean_32_cosine_ndcg@10 NanoMSMARCO_64_cosine_ndcg@10 NanoNFCorpus_64_cosine_ndcg@10 NanoNQ_64_cosine_ndcg@10 NanoBEIR_mean_64_cosine_ndcg@10 NanoMSMARCO_128_cosine_ndcg@10 NanoNFCorpus_128_cosine_ndcg@10 NanoNQ_128_cosine_ndcg@10 NanoBEIR_mean_128_cosine_ndcg@10 NanoMSMARCO_256_cosine_ndcg@10 NanoNFCorpus_256_cosine_ndcg@10 NanoNQ_256_cosine_ndcg@10 NanoBEIR_mean_256_cosine_ndcg@10
-1 -1 - - 0.1587 0.0673 0.0962 0.1074 0.2787 0.0843 0.2254 0.1962 0.4270 0.1786 0.3601 0.3219 0.5226 0.2079 0.4714 0.4006 0.6018 0.2616 0.5733 0.4789 0.6019 0.3201 0.6425 0.5215 0.6480 0.3496 0.6699 0.5558
0.0646 100 0.3153 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1293 200 0.2764 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1939 300 0.2646 0.2497 0.1417 0.0671 0.1031 0.1040 0.2714 0.1042 0.2025 0.1927 0.3948 0.1421 0.3478 0.2949 0.5338 0.1954 0.4266 0.3852 0.6107 0.2885 0.5707 0.4900 0.5864 0.3582 0.6326 0.5257 0.6045 0.3607 0.6362 0.5338
0.2586 400 0.2572 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3232 500 0.2521 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3878 600 0.2485 0.2365 0.1768 0.0722 0.1584 0.1358 0.2110 0.0697 0.2194 0.1667 0.3999 0.1301 0.3274 0.2858 0.5493 0.2184 0.4476 0.4051 0.5867 0.2808 0.5253 0.4643 0.5823 0.3298 0.5948 0.5023 0.5816 0.3532 0.6561 0.5303
0.4525 700 0.2456 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5171 800 0.2431 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5818 900 0.2412 0.2301 0.1837 0.0763 0.1371 0.1324 0.2875 0.0834 0.2195 0.1968 0.4224 0.1298 0.3448 0.2990 0.5197 0.2075 0.4749 0.4007 0.6067 0.2714 0.5342 0.4708 0.6101 0.3247 0.6003 0.5117 0.5662 0.3652 0.6407 0.5240
0.6464 1000 0.2397 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7111 1100 0.2378 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7757 1200 0.2375 0.2267 0.1783 0.0569 0.1241 0.1198 0.2543 0.1010 0.1927 0.1827 0.4190 0.1357 0.3332 0.2959 0.5284 0.2205 0.4416 0.3968 0.5786 0.2487 0.5570 0.4614 0.5783 0.3295 0.6148 0.5075 0.5860 0.3670 0.6558 0.5363
0.8403 1300 0.2372 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9050 1400 0.2357 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9696 1500 0.236 0.2255 0.2011 0.0670 0.1246 0.1309 0.2540 0.0858 0.2371 0.1923 0.4558 0.1372 0.3172 0.3034 0.5263 0.2110 0.4061 0.3811 0.5971 0.2639 0.5188 0.4599 0.5752 0.3326 0.5755 0.4945 0.5886 0.3658 0.6536 0.5360
-1 -1 - - 0.2085 0.0642 0.1245 0.1324 0.2598 0.0864 0.2377 0.1946 0.4570 0.1345 0.3305 0.3073 0.5319 0.2104 0.4161 0.3862 0.5912 0.2629 0.5342 0.4628 0.5731 0.3320 0.5798 0.4949 0.5935 0.3632 0.6647 0.5404

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.272 kWh
  • Carbon Emitted: 0.106 kg of CO2
  • Hours Used: 0.75 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}