Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6570, 0.1768, 0.1651]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO_4 NanoNFCorpus_4 NanoNQ_4
cosine_accuracy@1 0.12 0.06 0.04
cosine_accuracy@3 0.16 0.14 0.08
cosine_accuracy@5 0.26 0.24 0.16
cosine_accuracy@10 0.34 0.3 0.26
cosine_precision@1 0.12 0.06 0.04
cosine_precision@3 0.0533 0.06 0.0267
cosine_precision@5 0.052 0.068 0.032
cosine_precision@10 0.034 0.064 0.026
cosine_recall@1 0.12 0.0009 0.04
cosine_recall@3 0.16 0.0034 0.08
cosine_recall@5 0.26 0.0076 0.16
cosine_recall@10 0.34 0.015 0.25
cosine_ndcg@10 0.2085 0.0642 0.1245
cosine_mrr@10 0.1689 0.1274 0.0876
cosine_map@100 0.1829 0.0146 0.0994
query_active_dims 4.0 4.0 4.0
query_sparsity_ratio 0.999 0.999 0.999
corpus_active_dims 4.0 4.0 4.0
corpus_sparsity_ratio 0.999 0.999 0.999

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_4
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 4
    }
    
Metric Value
cosine_accuracy@1 0.0733
cosine_accuracy@3 0.1267
cosine_accuracy@5 0.22
cosine_accuracy@10 0.3
cosine_precision@1 0.0733
cosine_precision@3 0.0467
cosine_precision@5 0.0507
cosine_precision@10 0.0413
cosine_recall@1 0.0536
cosine_recall@3 0.0811
cosine_recall@5 0.1425
cosine_recall@10 0.2017
cosine_ndcg@10 0.1324
cosine_mrr@10 0.128
cosine_map@100 0.099
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric NanoMSMARCO_8 NanoNFCorpus_8 NanoNQ_8
cosine_accuracy@1 0.14 0.08 0.08
cosine_accuracy@3 0.24 0.24 0.24
cosine_accuracy@5 0.32 0.32 0.3
cosine_accuracy@10 0.42 0.4 0.44
cosine_precision@1 0.14 0.08 0.08
cosine_precision@3 0.08 0.1067 0.08
cosine_precision@5 0.064 0.1 0.06
cosine_precision@10 0.042 0.082 0.046
cosine_recall@1 0.14 0.0035 0.08
cosine_recall@3 0.24 0.0133 0.22
cosine_recall@5 0.32 0.0186 0.28
cosine_recall@10 0.42 0.0275 0.42
cosine_ndcg@10 0.2598 0.0864 0.2377
cosine_mrr@10 0.2109 0.1676 0.1862
cosine_map@100 0.2209 0.0273 0.187
query_active_dims 8.0 8.0 8.0
query_sparsity_ratio 0.998 0.998 0.998
corpus_active_dims 8.0 8.0 8.0
corpus_sparsity_ratio 0.998 0.998 0.998

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_8
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 8
    }
    
Metric Value
cosine_accuracy@1 0.1
cosine_accuracy@3 0.24
cosine_accuracy@5 0.3133
cosine_accuracy@10 0.42
cosine_precision@1 0.1
cosine_precision@3 0.0889
cosine_precision@5 0.0747
cosine_precision@10 0.0567
cosine_recall@1 0.0745
cosine_recall@3 0.1578
cosine_recall@5 0.2062
cosine_recall@10 0.2892
cosine_ndcg@10 0.1946
cosine_mrr@10 0.1882
cosine_map@100 0.1451
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric NanoMSMARCO_16 NanoNFCorpus_16 NanoNQ_16
cosine_accuracy@1 0.22 0.18 0.22
cosine_accuracy@3 0.48 0.34 0.32
cosine_accuracy@5 0.58 0.44 0.36
cosine_accuracy@10 0.7 0.54 0.5
cosine_precision@1 0.22 0.18 0.22
cosine_precision@3 0.16 0.1533 0.1067
cosine_precision@5 0.116 0.144 0.072
cosine_precision@10 0.07 0.124 0.052
cosine_recall@1 0.22 0.0066 0.22
cosine_recall@3 0.48 0.0151 0.3
cosine_recall@5 0.58 0.0238 0.33
cosine_recall@10 0.7 0.0392 0.48
cosine_ndcg@10 0.457 0.1345 0.3305
cosine_mrr@10 0.3796 0.2814 0.2882
cosine_map@100 0.3855 0.0403 0.2997
query_active_dims 16.0 16.0 16.0
query_sparsity_ratio 0.9961 0.9961 0.9961
corpus_active_dims 16.0 16.0 16.0
corpus_sparsity_ratio 0.9961 0.9961 0.9961

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_16
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 16
    }
    
Metric Value
cosine_accuracy@1 0.2067
cosine_accuracy@3 0.38
cosine_accuracy@5 0.46
cosine_accuracy@10 0.58
cosine_precision@1 0.2067
cosine_precision@3 0.14
cosine_precision@5 0.1107
cosine_precision@10 0.082
cosine_recall@1 0.1489
cosine_recall@3 0.265
cosine_recall@5 0.3113
cosine_recall@10 0.4064
cosine_ndcg@10 0.3073
cosine_mrr@10 0.3164
cosine_map@100 0.2419
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric NanoMSMARCO_32 NanoNFCorpus_32 NanoNQ_32
cosine_accuracy@1 0.36 0.36 0.28
cosine_accuracy@3 0.58 0.48 0.4
cosine_accuracy@5 0.62 0.52 0.52
cosine_accuracy@10 0.7 0.64 0.62
cosine_precision@1 0.36 0.36 0.28
cosine_precision@3 0.1933 0.24 0.1333
cosine_precision@5 0.124 0.22 0.104
cosine_precision@10 0.07 0.172 0.066
cosine_recall@1 0.36 0.0151 0.26
cosine_recall@3 0.58 0.032 0.37
cosine_recall@5 0.62 0.0516 0.47
cosine_recall@10 0.7 0.0704 0.59
cosine_ndcg@10 0.5319 0.2104 0.4161
cosine_mrr@10 0.4783 0.4425 0.3762
cosine_map@100 0.4895 0.0709 0.3702
query_active_dims 32.0 32.0 32.0
query_sparsity_ratio 0.9922 0.9922 0.9922
corpus_active_dims 32.0 32.0 32.0
corpus_sparsity_ratio 0.9922 0.9922 0.9922

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_32
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 32
    }
    
Metric Value
cosine_accuracy@1 0.3333
cosine_accuracy@3 0.4867
cosine_accuracy@5 0.5533
cosine_accuracy@10 0.6533
cosine_precision@1 0.3333
cosine_precision@3 0.1889
cosine_precision@5 0.1493
cosine_precision@10 0.1027
cosine_recall@1 0.2117
cosine_recall@3 0.3273
cosine_recall@5 0.3805
cosine_recall@10 0.4535
cosine_ndcg@10 0.3862
cosine_mrr@10 0.4324
cosine_map@100 0.3102
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric NanoMSMARCO_64 NanoNFCorpus_64 NanoNQ_64
cosine_accuracy@1 0.42 0.32 0.4
cosine_accuracy@3 0.6 0.5 0.62
cosine_accuracy@5 0.66 0.52 0.66
cosine_accuracy@10 0.8 0.6 0.72
cosine_precision@1 0.42 0.32 0.4
cosine_precision@3 0.2 0.2933 0.2067
cosine_precision@5 0.132 0.252 0.136
cosine_precision@10 0.08 0.236 0.076
cosine_recall@1 0.42 0.02 0.38
cosine_recall@3 0.6 0.0453 0.58
cosine_recall@5 0.66 0.0563 0.61
cosine_recall@10 0.8 0.0893 0.67
cosine_ndcg@10 0.5912 0.2629 0.5342
cosine_mrr@10 0.5273 0.4175 0.5066
cosine_map@100 0.5351 0.1057 0.4968
query_active_dims 64.0 64.0 64.0
query_sparsity_ratio 0.9844 0.9844 0.9844
corpus_active_dims 64.0 64.0 64.0
corpus_sparsity_ratio 0.9844 0.9844 0.9844

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_64
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 64
    }
    
Metric Value
cosine_accuracy@1 0.38
cosine_accuracy@3 0.5733
cosine_accuracy@5 0.6133
cosine_accuracy@10 0.7067
cosine_precision@1 0.38
cosine_precision@3 0.2333
cosine_precision@5 0.1733
cosine_precision@10 0.1307
cosine_recall@1 0.2733
cosine_recall@3 0.4084
cosine_recall@5 0.4421
cosine_recall@10 0.5198
cosine_ndcg@10 0.4628
cosine_mrr@10 0.4838
cosine_map@100 0.3792
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric NanoMSMARCO_128 NanoNFCorpus_128 NanoNQ_128
cosine_accuracy@1 0.34 0.4 0.44
cosine_accuracy@3 0.64 0.54 0.64
cosine_accuracy@5 0.68 0.58 0.68
cosine_accuracy@10 0.8 0.72 0.78
cosine_precision@1 0.34 0.4 0.44
cosine_precision@3 0.2133 0.3667 0.22
cosine_precision@5 0.136 0.308 0.144
cosine_precision@10 0.08 0.276 0.082
cosine_recall@1 0.34 0.0427 0.41
cosine_recall@3 0.64 0.0809 0.6
cosine_recall@5 0.68 0.0941 0.64
cosine_recall@10 0.8 0.1378 0.73
cosine_ndcg@10 0.5731 0.332 0.5798
cosine_mrr@10 0.5008 0.4858 0.5521
cosine_map@100 0.5127 0.1509 0.5336
query_active_dims 128.0 128.0 128.0
query_sparsity_ratio 0.9688 0.9688 0.9688
corpus_active_dims 128.0 128.0 128.0
corpus_sparsity_ratio 0.9688 0.9688 0.9688

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_128
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 128
    }
    
Metric Value
cosine_accuracy@1 0.3933
cosine_accuracy@3 0.6067
cosine_accuracy@5 0.6467
cosine_accuracy@10 0.7667
cosine_precision@1 0.3933
cosine_precision@3 0.2667
cosine_precision@5 0.196
cosine_precision@10 0.146
cosine_recall@1 0.2642
cosine_recall@3 0.4403
cosine_recall@5 0.4714
cosine_recall@10 0.5559
cosine_ndcg@10 0.4949
cosine_mrr@10 0.5129
cosine_map@100 0.3991
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric NanoMSMARCO_256 NanoNFCorpus_256 NanoNQ_256
cosine_accuracy@1 0.36 0.46 0.56
cosine_accuracy@3 0.62 0.62 0.7
cosine_accuracy@5 0.7 0.74 0.76
cosine_accuracy@10 0.84 0.78 0.82
cosine_precision@1 0.36 0.46 0.56
cosine_precision@3 0.2067 0.3867 0.2467
cosine_precision@5 0.14 0.364 0.16
cosine_precision@10 0.084 0.298 0.088
cosine_recall@1 0.36 0.0475 0.52
cosine_recall@3 0.62 0.0853 0.67
cosine_recall@5 0.7 0.1154 0.72
cosine_recall@10 0.84 0.1527 0.78
cosine_ndcg@10 0.5935 0.3632 0.6647
cosine_mrr@10 0.5159 0.5609 0.6482
cosine_map@100 0.5228 0.1677 0.6253
query_active_dims 256.0 256.0 256.0
query_sparsity_ratio 0.9375 0.9375 0.9375
corpus_active_dims 256.0 256.0 256.0
corpus_sparsity_ratio 0.9375 0.9375 0.9375

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean_256
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "max_active_dims": 256
    }
    
Metric Value
cosine_accuracy@1 0.46
cosine_accuracy@3 0.6467
cosine_accuracy@5 0.7333
cosine_accuracy@10 0.8133
cosine_precision@1 0.46
cosine_precision@3 0.28
cosine_precision@5 0.2213
cosine_precision@10 0.1567
cosine_recall@1 0.3092
cosine_recall@3 0.4584
cosine_recall@5 0.5118
cosine_recall@10 0.5909
cosine_ndcg@10 0.5404
cosine_mrr@10 0.575
cosine_map@100 0.4386
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_4_cosine_ndcg@10 NanoNFCorpus_4_cosine_ndcg@10 NanoNQ_4_cosine_ndcg@10 NanoBEIR_mean_4_cosine_ndcg@10 NanoMSMARCO_8_cosine_ndcg@10 NanoNFCorpus_8_cosine_ndcg@10 NanoNQ_8_cosine_ndcg@10 NanoBEIR_mean_8_cosine_ndcg@10 NanoMSMARCO_16_cosine_ndcg@10 NanoNFCorpus_16_cosine_ndcg@10 NanoNQ_16_cosine_ndcg@10 NanoBEIR_mean_16_cosine_ndcg@10 NanoMSMARCO_32_cosine_ndcg@10 NanoNFCorpus_32_cosine_ndcg@10 NanoNQ_32_cosine_ndcg@10 NanoBEIR_mean_32_cosine_ndcg@10 NanoMSMARCO_64_cosine_ndcg@10 NanoNFCorpus_64_cosine_ndcg@10 NanoNQ_64_cosine_ndcg@10 NanoBEIR_mean_64_cosine_ndcg@10 NanoMSMARCO_128_cosine_ndcg@10 NanoNFCorpus_128_cosine_ndcg@10 NanoNQ_128_cosine_ndcg@10 NanoBEIR_mean_128_cosine_ndcg@10 NanoMSMARCO_256_cosine_ndcg@10 NanoNFCorpus_256_cosine_ndcg@10 NanoNQ_256_cosine_ndcg@10 NanoBEIR_mean_256_cosine_ndcg@10
-1 -1 - - 0.1587 0.0673 0.0962 0.1074 0.2787 0.0843 0.2254 0.1962 0.4270 0.1786 0.3601 0.3219 0.5226 0.2079 0.4714 0.4006 0.6018 0.2616 0.5733 0.4789 0.6019 0.3201 0.6425 0.5215 0.6480 0.3496 0.6699 0.5558
0.0646 100 0.3153 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1293 200 0.2764 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.1939 300 0.2646 0.2497 0.1417 0.0671 0.1031 0.1040 0.2714 0.1042 0.2025 0.1927 0.3948 0.1421 0.3478 0.2949 0.5338 0.1954 0.4266 0.3852 0.6107 0.2885 0.5707 0.4900 0.5864 0.3582 0.6326 0.5257 0.6045 0.3607 0.6362 0.5338
0.2586 400 0.2572 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3232 500 0.2521 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.3878 600 0.2485 0.2365 0.1768 0.0722 0.1584 0.1358 0.2110 0.0697 0.2194 0.1667 0.3999 0.1301 0.3274 0.2858 0.5493 0.2184 0.4476 0.4051 0.5867 0.2808 0.5253 0.4643 0.5823 0.3298 0.5948 0.5023 0.5816 0.3532 0.6561 0.5303
0.4525 700 0.2456 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5171 800 0.2431 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.5818 900 0.2412 0.2301 0.1837 0.0763 0.1371 0.1324 0.2875 0.0834 0.2195 0.1968 0.4224 0.1298 0.3448 0.2990 0.5197 0.2075 0.4749 0.4007 0.6067 0.2714 0.5342 0.4708 0.6101 0.3247 0.6003 0.5117 0.5662 0.3652 0.6407 0.5240
0.6464 1000 0.2397 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7111 1100 0.2378 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.7757 1200 0.2375 0.2267 0.1783 0.0569 0.1241 0.1198 0.2543 0.1010 0.1927 0.1827 0.4190 0.1357 0.3332 0.2959 0.5284 0.2205 0.4416 0.3968 0.5786 0.2487 0.5570 0.4614 0.5783 0.3295 0.6148 0.5075 0.5860 0.3670 0.6558 0.5363
0.8403 1300 0.2372 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9050 1400 0.2357 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0.9696 1500 0.236 0.2255 0.2011 0.0670 0.1246 0.1309 0.2540 0.0858 0.2371 0.1923 0.4558 0.1372 0.3172 0.3034 0.5263 0.2110 0.4061 0.3811 0.5971 0.2639 0.5188 0.4599 0.5752 0.3326 0.5755 0.4945 0.5886 0.3658 0.6536 0.5360
-1 -1 - - 0.2085 0.0642 0.1245 0.1324 0.2598 0.0864 0.2377 0.1946 0.4570 0.1345 0.3305 0.3073 0.5319 0.2104 0.4161 0.3862 0.5912 0.2629 0.5342 0.4628 0.5731 0.3320 0.5798 0.4949 0.5935 0.3632 0.6647 0.5404

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.272 kWh
  • Carbon Emitted: 0.106 kg of CO2
  • Hours Used: 0.75 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
3
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/csr-mxbai-embed-large-v1-nq-nanobeir

Finetuned
(38)
this model

Dataset used to train tomaarsen/csr-mxbai-embed-large-v1-nq-nanobeir

Evaluation results