metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:3011496
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- source_sentence: how much is a car title transfer in minnesota?
sentences:
- >-
This complex is a larger molecule than the original crystal violet stain
and iodine and is insoluble in water. ... Conversely, the the outer
membrane of Gram negative bacteria is degraded and the thinner
peptidoglycan layer of Gram negative cells is unable to retain the
crystal violet-iodine complex and the color is lost.
- >-
Get insurance on the car and provide proof. Bring this information
(including the title) to the Minnesota DVS office, as well as $10 for
the filing fee and $7.25 for the titling fee. There is also a $10
transfer tax, as well as a 6.5% sales tax on the purchase price.
- >-
One of the risks of DNP is that it accelerates the metabolism to a
dangerously fast level. Our metabolic system operates at the rate it
does for a reason – it is safe. Speeding up the metabolism may help burn
off fat, but it can also trigger a number of potentially dangerous side
effects, such as: fever.
- source_sentence: what is the difference between 18 and 20 inch tires?
sentences:
- >-
The only real difference is a 20" rim would be more likely to be
damaged, as you pointed out. Beyond looks, there is zero benefit for the
20" rim. Also, just the availability of tires will likely be much more
limited for the larger rim. ... Tire selection is better for 18" wheels
than 20" wheels.
- >-
['Open your Outlook app on your mobile device and click on the Settings
gear icon.', 'Under Settings, click on the Signature option.', 'Enter
either a generic signature that could be used for all email accounts
tied to your Outlook app, or a specific signature, Per Account
Signature, for each email account.']
- >-
The average normal body temperature is around 98.6 degrees Fahrenheit,
or 37 degrees Celsius. If your body temperature drops to just a few
degrees lower than this, your blood vessels in your hands, feet, arms,
and legs start to get narrower.
- source_sentence: whom the bell tolls meaning?
sentences:
- >-
Answer: Humans are depicted in Hindu art often in sensuous and erotic
postures.
- >-
The phrase "For whom the bell tolls" refers to the church bells that are
rung when a person dies. Hence, the author is suggesting that we should
not be curious as to for whom the church bell is tolling for. It is for
all of us.
- '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
- source_sentence: how long before chlamydia symptoms appear?
sentences:
- >-
Most people who have chlamydia don't notice any symptoms. If you do get
symptoms, these usually appear between 1 and 3 weeks after having
unprotected sex with an infected person. For some people they don't
develop until many months later. Sometimes the symptoms can disappear
after a few days.
- >-
['Open the My Verizon app . ... ', 'Tap the Menu icon. ... ', 'Tap
Manage device for the appropriate mobile number. ... ', 'Tap Transfer
content between phones. ... ', 'Tap Start Transfer.']
- >-
Psychiatrist vs Psychologist A psychiatrist is classed as a medical
doctor, they include a physical examination of symptoms in their
assessment and are able to prescribe medicine: a psychologist is also a
doctor by virtue of their PHD level qualification, but is not medically
trained and cannot prescribe.
- source_sentence: are you human korean novela?
sentences:
- >-
Many cysts heal on their own, which means that conservative treatments
like rest and anti-inflammatory painkillers can often be enough to get
rid of them. However, in some cases, routine drainage of the sac may be
necessary to reduce symptoms.
- >-
A relative of European pear varieties like Bartlett and Anjou, the Asian
pear is great used in recipes or simply eaten out of hand. It retains a
crispness that works well in slaws and salads, and it holds its shape
better than European pears when baked and cooked.
- >-
Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human
Too?) is a 2018 South Korean television series starring Seo Kang-jun and
Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST)
time slot, from June 4 to August 7, 2018.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- row_non_zero_mean_query
- row_sparsity_mean_query
- row_non_zero_mean_corpus
- row_sparsity_mean_corpus
co2_eq_emissions:
emissions: 352.04549733882556
energy_consumed: 0.9056951014886098
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 2.117
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 128
type: NanoMSMARCO_128
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.86
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.36
name: Dot Recall@1
- type: dot_recall@3
value: 0.64
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.86
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6055413265295657
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5249365079365079
name: Dot Mrr@10
- type: dot_map@100
value: 0.5299802344587291
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 128
type: NanoNFCorpus_128
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.52
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.68
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.32
name: Dot Precision@3
- type: dot_precision@5
value: 0.27999999999999997
name: Dot Precision@5
- type: dot_precision@10
value: 0.24600000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.0215204036359272
name: Dot Recall@1
- type: dot_recall@3
value: 0.04799314214281322
name: Dot Recall@3
- type: dot_recall@5
value: 0.06373415154707394
name: Dot Recall@5
- type: dot_recall@10
value: 0.0979246816076223
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.28193067797046806
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4415793650793651
name: Dot Mrr@10
- type: dot_map@100
value: 0.11047621170887942
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 128
type: NanoNQ_128
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.2
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.37
name: Dot Recall@1
- type: dot_recall@3
value: 0.54
name: Dot Recall@3
- type: dot_recall@5
value: 0.62
name: Dot Recall@5
- type: dot_recall@10
value: 0.73
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.54915705928894
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5041904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.49271607077427093
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 128
type: NanoBEIR_mean_128
metrics:
- type: dot_accuracy@1
value: 0.3666666666666667
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7733333333333334
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3666666666666667
name: Dot Precision@1
- type: dot_precision@3
value: 0.24444444444444446
name: Dot Precision@3
- type: dot_precision@5
value: 0.18800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.138
name: Dot Precision@10
- type: dot_recall@1
value: 0.2505068012119757
name: Dot Recall@1
- type: dot_recall@3
value: 0.40933104738093773
name: Dot Recall@3
- type: dot_recall@5
value: 0.47457805051569135
name: Dot Recall@5
- type: dot_recall@10
value: 0.5626415605358741
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.47887635459632455
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.49023544973544975
name: Dot Mrr@10
- type: dot_map@100
value: 0.3777241723139599
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.44
name: Dot Recall@1
- type: dot_recall@3
value: 0.64
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.9
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6593706160726032
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5844126984126984
name: Dot Mrr@10
- type: dot_map@100
value: 0.587731189263798
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 256
type: NanoNFCorpus_256
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.3399999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.316
name: Dot Precision@5
- type: dot_precision@10
value: 0.274
name: Dot Precision@10
- type: dot_recall@1
value: 0.039388755003198654
name: Dot Recall@1
- type: dot_recall@3
value: 0.07303098045854087
name: Dot Recall@3
- type: dot_recall@5
value: 0.09531734035764254
name: Dot Recall@5
- type: dot_recall@10
value: 0.13417588936034655
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3210896460550523
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.43734920634920627
name: Dot Mrr@10
- type: dot_map@100
value: 0.14778423566638732
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 256
type: NanoNQ_256
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.68
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.23333333333333336
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.086
name: Dot Precision@10
- type: dot_recall@1
value: 0.42
name: Dot Recall@1
- type: dot_recall@3
value: 0.63
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.77
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6014886386931141
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5650238095238095
name: Dot Mrr@10
- type: dot_map@100
value: 0.5493009547376917
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: dot_accuracy@1
value: 0.39999999999999997
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6000000000000001
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6866666666666665
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8133333333333334
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.39999999999999997
name: Dot Precision@1
- type: dot_precision@3
value: 0.2622222222222222
name: Dot Precision@3
- type: dot_precision@5
value: 0.20533333333333337
name: Dot Precision@5
- type: dot_precision@10
value: 0.15
name: Dot Precision@10
- type: dot_recall@1
value: 0.2997962516677329
name: Dot Recall@1
- type: dot_recall@3
value: 0.44767699348618023
name: Dot Recall@3
- type: dot_recall@5
value: 0.5051057801192141
name: Dot Recall@5
- type: dot_recall@10
value: 0.6013919631201156
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5273163002735899
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5289285714285713
name: Dot Mrr@10
- type: dot_map@100
value: 0.428272126555959
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
Sparse CSR model trained on Natural Questions
This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: CSR Sparse Encoder
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 4096 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-gooaq-1e-5-512bs")
# Run inference
sentences = [
'are you human korean novela?',
"Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO_128
,NanoNFCorpus_128
andNanoNQ_128
- Evaluated with
SparseInformationRetrievalEvaluator
with these parameters:{ "max_active_dims": 128 }
Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
---|---|---|---|
dot_accuracy@1 | 0.36 | 0.36 | 0.38 |
dot_accuracy@3 | 0.64 | 0.46 | 0.58 |
dot_accuracy@5 | 0.74 | 0.52 | 0.66 |
dot_accuracy@10 | 0.86 | 0.68 | 0.78 |
dot_precision@1 | 0.36 | 0.36 | 0.38 |
dot_precision@3 | 0.2133 | 0.32 | 0.2 |
dot_precision@5 | 0.148 | 0.28 | 0.136 |
dot_precision@10 | 0.086 | 0.246 | 0.082 |
dot_recall@1 | 0.36 | 0.0215 | 0.37 |
dot_recall@3 | 0.64 | 0.048 | 0.54 |
dot_recall@5 | 0.74 | 0.0637 | 0.62 |
dot_recall@10 | 0.86 | 0.0979 | 0.73 |
dot_ndcg@10 | 0.6055 | 0.2819 | 0.5492 |
dot_mrr@10 | 0.5249 | 0.4416 | 0.5042 |
dot_map@100 | 0.53 | 0.1105 | 0.4927 |
row_non_zero_mean_query | 128.0 | 128.0 | 128.0 |
row_sparsity_mean_query | 0.9688 | 0.9688 | 0.9688 |
row_non_zero_mean_corpus | 128.0 | 128.0 | 128.0 |
row_sparsity_mean_corpus | 0.9688 | 0.9688 | 0.9688 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean_128
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "max_active_dims": 128 }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3667 |
dot_accuracy@3 | 0.56 |
dot_accuracy@5 | 0.64 |
dot_accuracy@10 | 0.7733 |
dot_precision@1 | 0.3667 |
dot_precision@3 | 0.2444 |
dot_precision@5 | 0.188 |
dot_precision@10 | 0.138 |
dot_recall@1 | 0.2505 |
dot_recall@3 | 0.4093 |
dot_recall@5 | 0.4746 |
dot_recall@10 | 0.5626 |
dot_ndcg@10 | 0.4789 |
dot_mrr@10 | 0.4902 |
dot_map@100 | 0.3777 |
row_non_zero_mean_query | 128.0 |
row_sparsity_mean_query | 0.9688 |
row_non_zero_mean_corpus | 128.0 |
row_sparsity_mean_corpus | 0.9688 |
Sparse Information Retrieval
- Datasets:
NanoMSMARCO_256
,NanoNFCorpus_256
andNanoNQ_256
- Evaluated with
SparseInformationRetrievalEvaluator
with these parameters:{ "max_active_dims": 256 }
Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
---|---|---|---|
dot_accuracy@1 | 0.44 | 0.32 | 0.44 |
dot_accuracy@3 | 0.64 | 0.48 | 0.68 |
dot_accuracy@5 | 0.74 | 0.6 | 0.72 |
dot_accuracy@10 | 0.9 | 0.72 | 0.82 |
dot_precision@1 | 0.44 | 0.32 | 0.44 |
dot_precision@3 | 0.2133 | 0.34 | 0.2333 |
dot_precision@5 | 0.148 | 0.316 | 0.152 |
dot_precision@10 | 0.09 | 0.274 | 0.086 |
dot_recall@1 | 0.44 | 0.0394 | 0.42 |
dot_recall@3 | 0.64 | 0.073 | 0.63 |
dot_recall@5 | 0.74 | 0.0953 | 0.68 |
dot_recall@10 | 0.9 | 0.1342 | 0.77 |
dot_ndcg@10 | 0.6594 | 0.3211 | 0.6015 |
dot_mrr@10 | 0.5844 | 0.4373 | 0.565 |
dot_map@100 | 0.5877 | 0.1478 | 0.5493 |
row_non_zero_mean_query | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 |
row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean_256
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "max_active_dims": 256 }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4 |
dot_accuracy@3 | 0.6 |
dot_accuracy@5 | 0.6867 |
dot_accuracy@10 | 0.8133 |
dot_precision@1 | 0.4 |
dot_precision@3 | 0.2622 |
dot_precision@5 | 0.2053 |
dot_precision@10 | 0.15 |
dot_recall@1 | 0.2998 |
dot_recall@3 | 0.4477 |
dot_recall@5 | 0.5051 |
dot_recall@10 | 0.6014 |
dot_ndcg@10 | 0.5273 |
dot_mrr@10 | 0.5289 |
dot_map@100 | 0.4283 |
row_non_zero_mean_query | 256.0 |
row_sparsity_mean_query | 0.9375 |
row_non_zero_mean_corpus | 256.0 |
row_sparsity_mean_corpus | 0.9375 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.87 tokens
- max: 23 tokens
- min: 14 tokens
- mean: 60.09 tokens
- max: 201 tokens
- Samples:
question answer what is the difference between clay and mud mask?
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
myki how much on card?
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
how to find out if someone blocked your phone number on iphone?
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.88 tokens
- max: 22 tokens
- min: 14 tokens
- mean: 61.03 tokens
- max: 127 tokens
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512learning_rate
: 1e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_128_dot_ndcg@10 | NanoNFCorpus_128_dot_ndcg@10 | NanoNQ_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoNFCorpus_256_dot_ndcg@10 | NanoNQ_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.6421 | 0.2724 | 0.5528 | 0.4891 | 0.6425 | 0.2985 | 0.6194 | 0.5201 |
0.0170 | 100 | 0.5414 | - | - | - | - | - | - | - | - | - |
0.0340 | 200 | 0.5387 | - | - | - | - | - | - | - | - | - |
0.0510 | 300 | 0.5183 | - | - | - | - | - | - | - | - | - |
0.0680 | 400 | 0.5215 | - | - | - | - | - | - | - | - | - |
0.0850 | 500 | 0.5011 | - | - | - | - | - | - | - | - | - |
0.1020 | 600 | 0.5 | - | - | - | - | - | - | - | - | - |
0.1190 | 700 | 0.4885 | - | - | - | - | - | - | - | - | - |
0.1360 | 800 | 0.4777 | 0.3915 | 0.6173 | 0.2782 | 0.5465 | 0.4807 | 0.6406 | 0.3038 | 0.6318 | 0.5254 |
0.1530 | 900 | 0.4793 | - | - | - | - | - | - | - | - | - |
0.1700 | 1000 | 0.472 | - | - | - | - | - | - | - | - | - |
0.1870 | 1100 | 0.4679 | - | - | - | - | - | - | - | - | - |
0.2040 | 1200 | 0.4666 | - | - | - | - | - | - | - | - | - |
0.2210 | 1300 | 0.4569 | - | - | - | - | - | - | - | - | - |
0.2380 | 1400 | 0.4642 | - | - | - | - | - | - | - | - | - |
0.2550 | 1500 | 0.4611 | - | - | - | - | - | - | - | - | - |
0.272 | 1600 | 0.4537 | 0.3851 | 0.6314 | 0.266 | 0.5664 | 0.4879 | 0.6451 | 0.3238 | 0.6363 | 0.5351 |
0.2890 | 1700 | 0.4554 | - | - | - | - | - | - | - | - | - |
0.3060 | 1800 | 0.4475 | - | - | - | - | - | - | - | - | - |
0.3230 | 1900 | 0.4512 | - | - | - | - | - | - | - | - | - |
0.3400 | 2000 | 0.4522 | - | - | - | - | - | - | - | - | - |
0.3570 | 2100 | 0.4475 | - | - | - | - | - | - | - | - | - |
0.3740 | 2200 | 0.4499 | - | - | - | - | - | - | - | - | - |
0.3910 | 2300 | 0.4467 | - | - | - | - | - | - | - | - | - |
0.4080 | 2400 | 0.4467 | 0.3940 | 0.6264 | 0.2643 | 0.5719 | 0.4875 | 0.6092 | 0.3350 | 0.6363 | 0.5268 |
0.4250 | 2500 | 0.4477 | - | - | - | - | - | - | - | - | - |
0.4420 | 2600 | 0.4466 | - | - | - | - | - | - | - | - | - |
0.4590 | 2700 | 0.4436 | - | - | - | - | - | - | - | - | - |
0.4760 | 2800 | 0.4434 | - | - | - | - | - | - | - | - | - |
0.4930 | 2900 | 0.4437 | - | - | - | - | - | - | - | - | - |
0.5100 | 3000 | 0.4381 | - | - | - | - | - | - | - | - | - |
0.5270 | 3100 | 0.4426 | - | - | - | - | - | - | - | - | - |
0.5440 | 3200 | 0.4461 | 0.3850 | 0.5866 | 0.2857 | 0.5567 | 0.4763 | 0.6232 | 0.3313 | 0.6220 | 0.5255 |
0.5610 | 3300 | 0.4453 | - | - | - | - | - | - | - | - | - |
0.5780 | 3400 | 0.4361 | - | - | - | - | - | - | - | - | - |
0.5950 | 3500 | 0.436 | - | - | - | - | - | - | - | - | - |
0.6120 | 3600 | 0.4444 | - | - | - | - | - | - | - | - | - |
0.6290 | 3700 | 0.4405 | - | - | - | - | - | - | - | - | - |
0.6460 | 3800 | 0.4346 | - | - | - | - | - | - | - | - | - |
0.6630 | 3900 | 0.4345 | - | - | - | - | - | - | - | - | - |
0.6800 | 4000 | 0.4399 | 0.3857 | 0.5963 | 0.2898 | 0.5537 | 0.4800 | 0.6479 | 0.3129 | 0.6058 | 0.5222 |
0.6970 | 4100 | 0.434 | - | - | - | - | - | - | - | - | - |
0.7140 | 4200 | 0.4353 | - | - | - | - | - | - | - | - | - |
0.7310 | 4300 | 0.4277 | - | - | - | - | - | - | - | - | - |
0.7480 | 4400 | 0.4361 | - | - | - | - | - | - | - | - | - |
0.7650 | 4500 | 0.445 | - | - | - | - | - | - | - | - | - |
0.7820 | 4600 | 0.4331 | - | - | - | - | - | - | - | - | - |
0.7990 | 4700 | 0.4329 | - | - | - | - | - | - | - | - | - |
0.8160 | 4800 | 0.4336 | 0.3827 | 0.5929 | 0.2894 | 0.5617 | 0.4813 | 0.6444 | 0.3241 | 0.6120 | 0.5268 |
0.8330 | 4900 | 0.4319 | - | - | - | - | - | - | - | - | - |
0.8501 | 5000 | 0.4342 | - | - | - | - | - | - | - | - | - |
0.8671 | 5100 | 0.439 | - | - | - | - | - | - | - | - | - |
0.8841 | 5200 | 0.434 | - | - | - | - | - | - | - | - | - |
0.9011 | 5300 | 0.4396 | - | - | - | - | - | - | - | - | - |
0.9181 | 5400 | 0.4355 | - | - | - | - | - | - | - | - | - |
0.9351 | 5500 | 0.4326 | - | - | - | - | - | - | - | - | - |
0.9521 | 5600 | 0.4304 | 0.3810 | 0.6055 | 0.2819 | 0.5492 | 0.4789 | 0.6594 | 0.3211 | 0.6015 | 0.5273 |
0.9691 | 5700 | 0.4316 | - | - | - | - | - | - | - | - | - |
0.9861 | 5800 | 0.427 | - | - | - | - | - | - | - | - | - |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.906 kWh
- Carbon Emitted: 0.352 kg of CO2
- Hours Used: 2.117 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CSRLoss
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}