Sparse CSR model trained on Natural Questions
This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: CSR Sparse Encoder
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 4096 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-gooaq-1e-5-512bs")
# Run inference
sentences = [
'are you human korean novela?',
"Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO_128
,NanoNFCorpus_128
andNanoNQ_128
- Evaluated with
SparseInformationRetrievalEvaluator
with these parameters:{ "max_active_dims": 128 }
Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
---|---|---|---|
dot_accuracy@1 | 0.36 | 0.36 | 0.38 |
dot_accuracy@3 | 0.64 | 0.46 | 0.58 |
dot_accuracy@5 | 0.74 | 0.52 | 0.66 |
dot_accuracy@10 | 0.86 | 0.68 | 0.78 |
dot_precision@1 | 0.36 | 0.36 | 0.38 |
dot_precision@3 | 0.2133 | 0.32 | 0.2 |
dot_precision@5 | 0.148 | 0.28 | 0.136 |
dot_precision@10 | 0.086 | 0.246 | 0.082 |
dot_recall@1 | 0.36 | 0.0215 | 0.37 |
dot_recall@3 | 0.64 | 0.048 | 0.54 |
dot_recall@5 | 0.74 | 0.0637 | 0.62 |
dot_recall@10 | 0.86 | 0.0979 | 0.73 |
dot_ndcg@10 | 0.6055 | 0.2819 | 0.5492 |
dot_mrr@10 | 0.5249 | 0.4416 | 0.5042 |
dot_map@100 | 0.53 | 0.1105 | 0.4927 |
row_non_zero_mean_query | 128.0 | 128.0 | 128.0 |
row_sparsity_mean_query | 0.9688 | 0.9688 | 0.9688 |
row_non_zero_mean_corpus | 128.0 | 128.0 | 128.0 |
row_sparsity_mean_corpus | 0.9688 | 0.9688 | 0.9688 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean_128
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "max_active_dims": 128 }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3667 |
dot_accuracy@3 | 0.56 |
dot_accuracy@5 | 0.64 |
dot_accuracy@10 | 0.7733 |
dot_precision@1 | 0.3667 |
dot_precision@3 | 0.2444 |
dot_precision@5 | 0.188 |
dot_precision@10 | 0.138 |
dot_recall@1 | 0.2505 |
dot_recall@3 | 0.4093 |
dot_recall@5 | 0.4746 |
dot_recall@10 | 0.5626 |
dot_ndcg@10 | 0.4789 |
dot_mrr@10 | 0.4902 |
dot_map@100 | 0.3777 |
row_non_zero_mean_query | 128.0 |
row_sparsity_mean_query | 0.9688 |
row_non_zero_mean_corpus | 128.0 |
row_sparsity_mean_corpus | 0.9688 |
Sparse Information Retrieval
- Datasets:
NanoMSMARCO_256
,NanoNFCorpus_256
andNanoNQ_256
- Evaluated with
SparseInformationRetrievalEvaluator
with these parameters:{ "max_active_dims": 256 }
Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
---|---|---|---|
dot_accuracy@1 | 0.44 | 0.32 | 0.44 |
dot_accuracy@3 | 0.64 | 0.48 | 0.68 |
dot_accuracy@5 | 0.74 | 0.6 | 0.72 |
dot_accuracy@10 | 0.9 | 0.72 | 0.82 |
dot_precision@1 | 0.44 | 0.32 | 0.44 |
dot_precision@3 | 0.2133 | 0.34 | 0.2333 |
dot_precision@5 | 0.148 | 0.316 | 0.152 |
dot_precision@10 | 0.09 | 0.274 | 0.086 |
dot_recall@1 | 0.44 | 0.0394 | 0.42 |
dot_recall@3 | 0.64 | 0.073 | 0.63 |
dot_recall@5 | 0.74 | 0.0953 | 0.68 |
dot_recall@10 | 0.9 | 0.1342 | 0.77 |
dot_ndcg@10 | 0.6594 | 0.3211 | 0.6015 |
dot_mrr@10 | 0.5844 | 0.4373 | 0.565 |
dot_map@100 | 0.5877 | 0.1478 | 0.5493 |
row_non_zero_mean_query | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 |
row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 |
row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean_256
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "max_active_dims": 256 }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4 |
dot_accuracy@3 | 0.6 |
dot_accuracy@5 | 0.6867 |
dot_accuracy@10 | 0.8133 |
dot_precision@1 | 0.4 |
dot_precision@3 | 0.2622 |
dot_precision@5 | 0.2053 |
dot_precision@10 | 0.15 |
dot_recall@1 | 0.2998 |
dot_recall@3 | 0.4477 |
dot_recall@5 | 0.5051 |
dot_recall@10 | 0.6014 |
dot_ndcg@10 | 0.5273 |
dot_mrr@10 | 0.5289 |
dot_map@100 | 0.4283 |
row_non_zero_mean_query | 256.0 |
row_sparsity_mean_query | 0.9375 |
row_non_zero_mean_corpus | 256.0 |
row_sparsity_mean_corpus | 0.9375 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.87 tokens
- max: 23 tokens
- min: 14 tokens
- mean: 60.09 tokens
- max: 201 tokens
- Samples:
question answer what is the difference between clay and mud mask?
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.
myki how much on card?
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.
how to find out if someone blocked your phone number on iphone?
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.88 tokens
- max: 22 tokens
- min: 14 tokens
- mean: 61.03 tokens
- max: 127 tokens
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
CSRLoss
with these parameters:{ "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512learning_rate
: 1e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_128_dot_ndcg@10 | NanoNFCorpus_128_dot_ndcg@10 | NanoNQ_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoNFCorpus_256_dot_ndcg@10 | NanoNQ_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.6421 | 0.2724 | 0.5528 | 0.4891 | 0.6425 | 0.2985 | 0.6194 | 0.5201 |
0.0170 | 100 | 0.5414 | - | - | - | - | - | - | - | - | - |
0.0340 | 200 | 0.5387 | - | - | - | - | - | - | - | - | - |
0.0510 | 300 | 0.5183 | - | - | - | - | - | - | - | - | - |
0.0680 | 400 | 0.5215 | - | - | - | - | - | - | - | - | - |
0.0850 | 500 | 0.5011 | - | - | - | - | - | - | - | - | - |
0.1020 | 600 | 0.5 | - | - | - | - | - | - | - | - | - |
0.1190 | 700 | 0.4885 | - | - | - | - | - | - | - | - | - |
0.1360 | 800 | 0.4777 | 0.3915 | 0.6173 | 0.2782 | 0.5465 | 0.4807 | 0.6406 | 0.3038 | 0.6318 | 0.5254 |
0.1530 | 900 | 0.4793 | - | - | - | - | - | - | - | - | - |
0.1700 | 1000 | 0.472 | - | - | - | - | - | - | - | - | - |
0.1870 | 1100 | 0.4679 | - | - | - | - | - | - | - | - | - |
0.2040 | 1200 | 0.4666 | - | - | - | - | - | - | - | - | - |
0.2210 | 1300 | 0.4569 | - | - | - | - | - | - | - | - | - |
0.2380 | 1400 | 0.4642 | - | - | - | - | - | - | - | - | - |
0.2550 | 1500 | 0.4611 | - | - | - | - | - | - | - | - | - |
0.272 | 1600 | 0.4537 | 0.3851 | 0.6314 | 0.266 | 0.5664 | 0.4879 | 0.6451 | 0.3238 | 0.6363 | 0.5351 |
0.2890 | 1700 | 0.4554 | - | - | - | - | - | - | - | - | - |
0.3060 | 1800 | 0.4475 | - | - | - | - | - | - | - | - | - |
0.3230 | 1900 | 0.4512 | - | - | - | - | - | - | - | - | - |
0.3400 | 2000 | 0.4522 | - | - | - | - | - | - | - | - | - |
0.3570 | 2100 | 0.4475 | - | - | - | - | - | - | - | - | - |
0.3740 | 2200 | 0.4499 | - | - | - | - | - | - | - | - | - |
0.3910 | 2300 | 0.4467 | - | - | - | - | - | - | - | - | - |
0.4080 | 2400 | 0.4467 | 0.3940 | 0.6264 | 0.2643 | 0.5719 | 0.4875 | 0.6092 | 0.3350 | 0.6363 | 0.5268 |
0.4250 | 2500 | 0.4477 | - | - | - | - | - | - | - | - | - |
0.4420 | 2600 | 0.4466 | - | - | - | - | - | - | - | - | - |
0.4590 | 2700 | 0.4436 | - | - | - | - | - | - | - | - | - |
0.4760 | 2800 | 0.4434 | - | - | - | - | - | - | - | - | - |
0.4930 | 2900 | 0.4437 | - | - | - | - | - | - | - | - | - |
0.5100 | 3000 | 0.4381 | - | - | - | - | - | - | - | - | - |
0.5270 | 3100 | 0.4426 | - | - | - | - | - | - | - | - | - |
0.5440 | 3200 | 0.4461 | 0.3850 | 0.5866 | 0.2857 | 0.5567 | 0.4763 | 0.6232 | 0.3313 | 0.6220 | 0.5255 |
0.5610 | 3300 | 0.4453 | - | - | - | - | - | - | - | - | - |
0.5780 | 3400 | 0.4361 | - | - | - | - | - | - | - | - | - |
0.5950 | 3500 | 0.436 | - | - | - | - | - | - | - | - | - |
0.6120 | 3600 | 0.4444 | - | - | - | - | - | - | - | - | - |
0.6290 | 3700 | 0.4405 | - | - | - | - | - | - | - | - | - |
0.6460 | 3800 | 0.4346 | - | - | - | - | - | - | - | - | - |
0.6630 | 3900 | 0.4345 | - | - | - | - | - | - | - | - | - |
0.6800 | 4000 | 0.4399 | 0.3857 | 0.5963 | 0.2898 | 0.5537 | 0.4800 | 0.6479 | 0.3129 | 0.6058 | 0.5222 |
0.6970 | 4100 | 0.434 | - | - | - | - | - | - | - | - | - |
0.7140 | 4200 | 0.4353 | - | - | - | - | - | - | - | - | - |
0.7310 | 4300 | 0.4277 | - | - | - | - | - | - | - | - | - |
0.7480 | 4400 | 0.4361 | - | - | - | - | - | - | - | - | - |
0.7650 | 4500 | 0.445 | - | - | - | - | - | - | - | - | - |
0.7820 | 4600 | 0.4331 | - | - | - | - | - | - | - | - | - |
0.7990 | 4700 | 0.4329 | - | - | - | - | - | - | - | - | - |
0.8160 | 4800 | 0.4336 | 0.3827 | 0.5929 | 0.2894 | 0.5617 | 0.4813 | 0.6444 | 0.3241 | 0.6120 | 0.5268 |
0.8330 | 4900 | 0.4319 | - | - | - | - | - | - | - | - | - |
0.8501 | 5000 | 0.4342 | - | - | - | - | - | - | - | - | - |
0.8671 | 5100 | 0.439 | - | - | - | - | - | - | - | - | - |
0.8841 | 5200 | 0.434 | - | - | - | - | - | - | - | - | - |
0.9011 | 5300 | 0.4396 | - | - | - | - | - | - | - | - | - |
0.9181 | 5400 | 0.4355 | - | - | - | - | - | - | - | - | - |
0.9351 | 5500 | 0.4326 | - | - | - | - | - | - | - | - | - |
0.9521 | 5600 | 0.4304 | 0.3810 | 0.6055 | 0.2819 | 0.5492 | 0.4789 | 0.6594 | 0.3211 | 0.6015 | 0.5273 |
0.9691 | 5700 | 0.4316 | - | - | - | - | - | - | - | - | - |
0.9861 | 5800 | 0.427 | - | - | - | - | - | - | - | - | - |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.906 kWh
- Carbon Emitted: 0.352 kg of CO2
- Hours Used: 2.117 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CSRLoss
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tomaarsen/csr-mxbai-embed-large-v1-gooaq-1e-5-512bs
Base model
mixedbread-ai/mxbai-embed-large-v1Dataset used to train tomaarsen/csr-mxbai-embed-large-v1-gooaq-1e-5-512bs
Evaluation results
- Dot Accuracy@1 on NanoMSMARCO 128self-reported0.360
- Dot Accuracy@3 on NanoMSMARCO 128self-reported0.640
- Dot Accuracy@5 on NanoMSMARCO 128self-reported0.740
- Dot Accuracy@10 on NanoMSMARCO 128self-reported0.860
- Dot Precision@1 on NanoMSMARCO 128self-reported0.360
- Dot Precision@3 on NanoMSMARCO 128self-reported0.213
- Dot Precision@5 on NanoMSMARCO 128self-reported0.148
- Dot Precision@10 on NanoMSMARCO 128self-reported0.086
- Dot Recall@1 on NanoMSMARCO 128self-reported0.360
- Dot Recall@3 on NanoMSMARCO 128self-reported0.640