whisper_checkpoints / README.md
tmtms's picture
End of training
d67e0b2 verified
metadata
language:
  - ko
license: apache-2.0
base_model: INo0121/whisper-base-ko-callvoice
tags:
  - generated_from_trainer
datasets:
  - kresnik/zeroth_korean
metrics:
  - wer
model-index:
  - name: tmtms/whisper_checkpoints
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Zeroth-Korean
          type: kresnik/zeroth_korean
          args: 'config: ko, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 10.856798674898359

tmtms/whisper_checkpoints

This model is a fine-tuned version of INo0121/whisper-base-ko-callvoice on the Zeroth-Korean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1501
  • Wer: 10.8568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1644 1.08 1000 0.2571 22.2406
0.0822 2.16 2000 0.1818 14.2448
0.0528 3.23 3000 0.1575 11.1128
0.0383 4.31 4000 0.1501 10.8568

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.15.2