metadata
language:
- ko
license: apache-2.0
base_model: INo0121/whisper-base-ko-callvoice
tags:
- generated_from_trainer
datasets:
- kresnik/zeroth_korean
metrics:
- wer
model-index:
- name: tmtms/whisper_checkpoints
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zeroth-Korean
type: kresnik/zeroth_korean
args: 'config: ko, split: test'
metrics:
- name: Wer
type: wer
value: 10.856798674898359
tmtms/whisper_checkpoints
This model is a fine-tuned version of INo0121/whisper-base-ko-callvoice on the Zeroth-Korean dataset. It achieves the following results on the evaluation set:
- Loss: 0.1501
- Wer: 10.8568
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1644 | 1.08 | 1000 | 0.2571 | 22.2406 |
0.0822 | 2.16 | 2000 | 0.1818 | 14.2448 |
0.0528 | 3.23 | 3000 | 0.1575 | 11.1128 |
0.0383 | 4.31 | 4000 | 0.1501 | 10.8568 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.15.2