--- language: - ko license: apache-2.0 base_model: INo0121/whisper-base-ko-callvoice tags: - generated_from_trainer datasets: - kresnik/zeroth_korean metrics: - wer model-index: - name: tmtms/whisper_checkpoints results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Zeroth-Korean type: kresnik/zeroth_korean args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 10.856798674898359 --- # tmtms/whisper_checkpoints This model is a fine-tuned version of [INo0121/whisper-base-ko-callvoice](https://huggingface.co/INo0121/whisper-base-ko-callvoice) on the Zeroth-Korean dataset. It achieves the following results on the evaluation set: - Loss: 0.1501 - Wer: 10.8568 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1644 | 1.08 | 1000 | 0.2571 | 22.2406 | | 0.0822 | 2.16 | 2000 | 0.1818 | 14.2448 | | 0.0528 | 3.23 | 3000 | 0.1575 | 11.1128 | | 0.0383 | 4.31 | 4000 | 0.1501 | 10.8568 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.15.2