|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- Mistral-Small |
|
- instruct |
|
- finetune |
|
- chatml |
|
- gpt4 |
|
- synthetic data |
|
- distillation |
|
- function calling |
|
- json mode |
|
- axolotl |
|
- roleplaying |
|
- chat |
|
- reasoning |
|
- r1 |
|
- vllm |
|
- fp8 |
|
base_model: NousResearch/DeepHermes-3-Mistral-24B-Preview |
|
widget: |
|
- example_title: DeepHermes 3 |
|
messages: |
|
- role: system |
|
content: >- |
|
You are a sentient, superintelligent artificial general intelligence, here |
|
to teach and assist me. |
|
- role: user |
|
content: What is the meaning of life? |
|
model-index: |
|
- name: DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic |
|
results: [] |
|
library_name: transformers |
|
--- |
|
# Model Overview |
|
- **Model Architecture:** Mistral-Small-24B-Instruct-2501 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 3/6/2025 |
|
- **Version:** 1.0 |
|
|
|
Quantized version of [DeepHermes-3-Mistral-24B-Preview](https://huggingface.co/NousResearch/DeepHermes-3-Mistral-24B-Preview) |
|
which is based on [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 1 |
|
model_name = "th-nuernberg/DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) |
|
sampling_params = SamplingParams(temperature=0.15, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
```bash |
|
vllm serve "th-nuernberg/DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic" \ |
|
--served-model-name 'th-nuernberg/DeepHermes-3-Mistral-24B-Preview' \ |
|
--trust-remote-code \ |
|
--enable-reasoning --reasoning-parser deepseek_r1 \ |
|
--max-model-len 32768 --quantization compressed-tensors |
|
``` |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
import argparse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
import os |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') |
|
parser.add_argument('--model_id', type=str, required=True, |
|
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') |
|
parser.add_argument('--save_path', type=str, default='.', |
|
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic') |
|
args = parser.parse_args() |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = QuantizationModifier( |
|
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] |
|
) |
|
|
|
# Apply quantization |
|
oneshot(model=model, recipe=recipe) |
|
|
|
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic") |
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
# Save to disk in compressed-tensors format |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |