metadata
language:
- en
license: apache-2.0
tags:
- Mistral-Small
- instruct
- finetune
- chatml
- gpt4
- synthetic data
- distillation
- function calling
- json mode
- axolotl
- roleplaying
- chat
- reasoning
- r1
- vllm
- fp8
base_model: NousResearch/DeepHermes-3-Mistral-24B-Preview
widget:
- example_title: DeepHermes 3
messages:
- role: system
content: >-
You are a sentient, superintelligent artificial general intelligence,
here to teach and assist me.
- role: user
content: What is the meaning of life?
model-index:
- name: DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic
results: []
library_name: transformers
Model Overview
- Model Architecture: Mistral-Small-24B-Instruct-2501
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date: 3/6/2025
- Version: 1.0
Quantized version of DeepHermes-3-Mistral-24B-Preview which is based on Mistral-Small-24B-Instruct-2501.
Model Optimizations
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
Deployment
Use with vLLM
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 4096, 1
model_name = "th-nuernberg/DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
sampling_params = SamplingParams(temperature=0.15, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
vllm serve "th-nuernberg/DeepHermes-3-Mistral-24B-Preview-FP8-Dynamic" \
--served-model-name 'th-nuernberg/DeepHermes-3-Mistral-24B-Preview' \
--trust-remote-code \
--enable-reasoning --reasoning-parser deepseek_r1 \
--max-model-len 32768 --quantization compressed-tensors
Creation
This model was created with llm-compressor by running the code snippet below.
import argparse
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
import os
def main():
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
parser.add_argument('--model_id', type=str, required=True,
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")')
parser.add_argument('--save_path', type=str, default='.',
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
args = parser.parse_args()
# Load model
model = AutoModelForCausalLM.from_pretrained(
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
)
# Apply quantization
oneshot(model=model, recipe=recipe)
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
os.makedirs(save_path, exist_ok=True)
# Save to disk in compressed-tensors format
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
if __name__ == "__main__":
main()