precise_chat / app.py
yogies's picture
Update app.py
859ac01 verified
raw
history blame
4.43 kB
import os
import gradio as gr
from huggingface_hub import InferenceClient
# ----------------------------------------------------------------------
# 1️⃣ Force the UI language (prevents the “svelte‑i18n” error)
# ----------------------------------------------------------------------
gr.set_default_language("en") # English UI – change if you need another locale
# ----------------------------------------------------------------------
# Helper to read a secret (with a safe fallback for local testing)
# ----------------------------------------------------------------------
def _secret(key: str, fallback: str = "") -> str:
"""Return the value of a secret or the supplied fallback."""
return os.getenv(key, fallback)
# ----------------------------------------------------------------------
# 2️⃣ Core chat logic – system prompt comes from the secret `prec_chat`
# ----------------------------------------------------------------------
def respond(
message: str,
history: list[dict[str, str]],
max_tokens: int,
temperature: float,
top_p: float,
hf_token: gr.OAuthToken,
):
"""
Generate a response using the HuggingFace Inference API.
The system prompt is taken from the secret **prec_chat**.
Users cannot edit it from the UI.
"""
# Load the system prompt (fallback = generic assistant)
system_message = _secret("prec_chat", "You are a helpful assistant.")
# Initialise the HF inference client
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
# Build the message list for the chat‑completion endpoint
messages = [{"role": "system", "content": system_message}]
messages.extend(history) # previous conversation turns
messages.append({"role": "user", "content": message}) # current user query
# Stream the response back to the UI
response = ""
for chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
choices = chunk.choices
token = ""
if choices and choices[0].delta.content:
token = choices[0].delta.content
response += token
yield response
# ----------------------------------------------------------------------
# 3️⃣ UI – the system‑prompt textbox has been removed.
# ----------------------------------------------------------------------
chatbot = gr.ChatInterface(
respond,
type="messages",
additional_inputs=[
# Only generation parameters are exposed now.
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top‑p (nucleus sampling)",
),
],
)
# ----------------------------------------------------------------------
# 4️⃣ Assemble the Blocks layout (no LoginButton – we use basic auth)
# ----------------------------------------------------------------------
with gr.Blocks() as demo:
chatbot.render()
# ----------------------------------------------------------------------
# 5️⃣ Launch – protect the UI with the credentials from secrets.
# ----------------------------------------------------------------------
if __name__ == "__main__":
# Pull the allowed credentials from secrets (raise early if they are missing)
allowed_user = _secret("CHAT_USER")
allowed_pass = _secret("CHAT_PASS")
if not allowed_user or not allowed_pass:
raise RuntimeError(
"Authentication credentials not found in secrets. "
"Add CHAT_USER and CHAT_PASS to secrets.toml (or via the HF Spaces UI)."
)
demo.launch(
auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth
# In a remote environment (HF Spaces, Docker, cloud VM) you need a shareable link:
share=True, # <-- remove if you run locally and can reach http://0.0.0.0:7860
# Optional – makes the server listen on all interfaces (useful in containers)
server_name="0.0.0.0",
# Optional – you can set a custom title, favicon, etc.
# title="Secure Chatbot",
)