import os import gradio as gr from huggingface_hub import InferenceClient # ---------------------------------------------------------------------- # 1️⃣ Force the UI language (prevents the “svelte‑i18n” error) # ---------------------------------------------------------------------- gr.set_default_language("en") # English UI – change if you need another locale # ---------------------------------------------------------------------- # Helper to read a secret (with a safe fallback for local testing) # ---------------------------------------------------------------------- def _secret(key: str, fallback: str = "") -> str: """Return the value of a secret or the supplied fallback.""" return os.getenv(key, fallback) # ---------------------------------------------------------------------- # 2️⃣ Core chat logic – system prompt comes from the secret `prec_chat` # ---------------------------------------------------------------------- def respond( message: str, history: list[dict[str, str]], max_tokens: int, temperature: float, top_p: float, hf_token: gr.OAuthToken, ): """ Generate a response using the HuggingFace Inference API. The system prompt is taken from the secret **prec_chat**. Users cannot edit it from the UI. """ # Load the system prompt (fallback = generic assistant) system_message = _secret("prec_chat", "You are a helpful assistant.") # Initialise the HF inference client client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") # Build the message list for the chat‑completion endpoint messages = [{"role": "system", "content": system_message}] messages.extend(history) # previous conversation turns messages.append({"role": "user", "content": message}) # current user query # Stream the response back to the UI response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): choices = chunk.choices token = "" if choices and choices[0].delta.content: token = choices[0].delta.content response += token yield response # ---------------------------------------------------------------------- # 3️⃣ UI – the system‑prompt textbox has been removed. # ---------------------------------------------------------------------- chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ # Only generation parameters are exposed now. gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top‑p (nucleus sampling)", ), ], ) # ---------------------------------------------------------------------- # 4️⃣ Assemble the Blocks layout (no LoginButton – we use basic auth) # ---------------------------------------------------------------------- with gr.Blocks() as demo: chatbot.render() # ---------------------------------------------------------------------- # 5️⃣ Launch – protect the UI with the credentials from secrets. # ---------------------------------------------------------------------- if __name__ == "__main__": # Pull the allowed credentials from secrets (raise early if they are missing) allowed_user = _secret("CHAT_USER") allowed_pass = _secret("CHAT_PASS") if not allowed_user or not allowed_pass: raise RuntimeError( "Authentication credentials not found in secrets. " "Add CHAT_USER and CHAT_PASS to secrets.toml (or via the HF Spaces UI)." ) demo.launch( auth=(allowed_user, allowed_pass), # <-- Gradio's built‑in basic auth # In a remote environment (HF Spaces, Docker, cloud VM) you need a shareable link: share=True, # <-- remove if you run locally and can reach http://0.0.0.0:7860 # Optional – makes the server listen on all interfaces (useful in containers) server_name="0.0.0.0", # Optional – you can set a custom title, favicon, etc. # title="Secure Chatbot", )