File size: 4,432 Bytes
0ff301d
4e4df74
 
 
de611b5
859ac01
de611b5
859ac01
 
 
 
 
 
de611b5
 
4e4df74
de611b5
 
859ac01
de611b5
4e4df74
0ff301d
4e4df74
0ff301d
 
 
4e4df74
 
 
0ff301d
 
de611b5
 
4e4df74
859ac01
de611b5
0ff301d
859ac01
4e4df74
 
859ac01
4e4df74
859ac01
 
4e4df74
859ac01
4e4df74
0ff301d
4e4df74
 
 
 
 
 
0ff301d
4e4df74
0ff301d
4e4df74
 
 
 
 
de611b5
859ac01
de611b5
4e4df74
 
 
 
de611b5
4e4df74
 
 
 
 
 
 
0ff301d
4e4df74
 
 
 
de611b5
859ac01
de611b5
4e4df74
 
 
 
de611b5
859ac01
de611b5
4e4df74
859ac01
 
 
de611b5
 
 
 
859ac01
de611b5
 
 
 
859ac01
 
 
 
 
 
de611b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import gradio as gr
from huggingface_hub import InferenceClient

# ----------------------------------------------------------------------
# 1️⃣  Force the UI language (prevents the “svelte‑i18n” error)
# ----------------------------------------------------------------------
gr.set_default_language("en")          # English UI – change if you need another locale

# ----------------------------------------------------------------------
# Helper to read a secret (with a safe fallback for local testing)
# ----------------------------------------------------------------------
def _secret(key: str, fallback: str = "") -> str:
    """Return the value of a secret or the supplied fallback."""
    return os.getenv(key, fallback)


# ----------------------------------------------------------------------
# 2️⃣  Core chat logic – system prompt comes from the secret `prec_chat`
# ----------------------------------------------------------------------
def respond(
    message: str,
    history: list[dict[str, str]],
    max_tokens: int,
    temperature: float,
    top_p: float,
    hf_token: gr.OAuthToken,
):
    """
    Generate a response using the HuggingFace Inference API.

    The system prompt is taken from the secret **prec_chat**.
    Users cannot edit it from the UI.
    """
    # Load the system prompt (fallback = generic assistant)
    system_message = _secret("prec_chat", "You are a helpful assistant.")

    # Initialise the HF inference client
    client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")

    # Build the message list for the chat‑completion endpoint
    messages = [{"role": "system", "content": system_message}]
    messages.extend(history)                     # previous conversation turns
    messages.append({"role": "user", "content": message})  # current user query

    # Stream the response back to the UI
    response = ""
    for chunk in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        choices = chunk.choices
        token = ""
        if choices and choices[0].delta.content:
            token = choices[0].delta.content
        response += token
        yield response


# ----------------------------------------------------------------------
# 3️⃣  UI – the system‑prompt textbox has been removed.
# ----------------------------------------------------------------------
chatbot = gr.ChatInterface(
    respond,
    type="messages",
    additional_inputs=[
        # Only generation parameters are exposed now.
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top‑p (nucleus sampling)",
        ),
    ],
)

# ----------------------------------------------------------------------
# 4️⃣  Assemble the Blocks layout (no LoginButton – we use basic auth)
# ----------------------------------------------------------------------
with gr.Blocks() as demo:
    chatbot.render()


# ----------------------------------------------------------------------
# 5️⃣  Launch – protect the UI with the credentials from secrets.
# ----------------------------------------------------------------------
if __name__ == "__main__":
    # Pull the allowed credentials from secrets (raise early if they are missing)
    allowed_user = _secret("CHAT_USER")
    allowed_pass = _secret("CHAT_PASS")

    if not allowed_user or not allowed_pass:
        raise RuntimeError(
            "Authentication credentials not found in secrets. "
            "Add CHAT_USER and CHAT_PASS to secrets.toml (or via the HF Spaces UI)."
        )

    demo.launch(
        auth=(allowed_user, allowed_pass),   # <-- Gradio's built‑in basic auth
        # In a remote environment (HF Spaces, Docker, cloud VM) you need a shareable link:
        share=True,                          # <-- remove if you run locally and can reach http://0.0.0.0:7860
        # Optional – makes the server listen on all interfaces (useful in containers)
        server_name="0.0.0.0",
        # Optional – you can set a custom title, favicon, etc.
        # title="Secure Chatbot",
    )