Spaces:
Sleeping
Sleeping
import plotly.express as px | |
import numpy as np | |
#function to plot interactive plotely chart | |
def interactive_plot(df): | |
fig = px.line() | |
for i in df.columns[1:]: | |
fig.add_scatter(x = df['Date'],y=df[i], name=i) | |
fig.update_layout(width=450, margin=dict(l=20,r=20,t=50,b=20),legend=dict(orientation = 'h', yanchor = 'bottom',y=1.02, xanchor='right',x=1,)) | |
return fig | |
#function to normalize the prices based on the initial price | |
def normalize(df_2): | |
df = df_2.copy() | |
for i in df.columns[1:]: | |
df[i] = df[i]/df[i][0] | |
return df | |
#functions to calculate daily returns | |
def daily_return(df): | |
df_daily_return = df.copy() | |
for i in df.columns[1:]: | |
for j in range(1,len(df)): | |
df_daily_return[i][j] = ((df[i][j]-df[i][j-1]/df[i][j-1])*100) | |
df_daily_return[i][0] = 0 | |
return df_daily_return | |
#functions to calculate beta | |
def calculate_beta(stocks_daily_return, stock): | |
rm = stocks_daily_return['SP500'].mean()*252 | |
b, a = np.polyfit(stocks_daily_return['SP500'], stocks_daily_return[stock],1) | |
return b,a |