Spaces:
Sleeping
Sleeping
Uploaded all required files
Browse files- app.py +113 -0
- capm_functions.py +37 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#importing libraries
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import yfinance as yf
|
5 |
+
import pandas_datareader.data as web
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
import capm_functions
|
9 |
+
|
10 |
+
#Streamlit page configuration
|
11 |
+
st.set_page_config(page_title="CAPM",
|
12 |
+
page_icon="chart_with_upwards_trend",
|
13 |
+
layout='wide')
|
14 |
+
|
15 |
+
st.title("Capital Asset Pricing Model")
|
16 |
+
|
17 |
+
# getting input from user
|
18 |
+
try:
|
19 |
+
col1, col2 =st.columns([1,1])
|
20 |
+
with col1:
|
21 |
+
stocks_list = st.multiselect("Choose 4 stocks", ('TSLA','AAPL','NFLX','MSFT','MGM','AMZN','NVDA','GOOGL'),('TSLA','AAPL','AMZN','GOOGL'))
|
22 |
+
|
23 |
+
with col2:
|
24 |
+
year=st.number_input("Numbers of years",1,10)
|
25 |
+
|
26 |
+
#downloading data for SP500
|
27 |
+
|
28 |
+
end = datetime.date.today()
|
29 |
+
start = datetime.date(datetime.date.today().year-year, datetime.date.today().month, datetime.date.today().day)
|
30 |
+
|
31 |
+
SP500 = web.DataReader(['sp500'], 'fred',start,end)
|
32 |
+
|
33 |
+
stocks_df = pd.DataFrame()
|
34 |
+
|
35 |
+
for stock in stocks_list:
|
36 |
+
data = yf.download(stock, period=f'{year}y')
|
37 |
+
stocks_df[f'{stock}'] = data['Close']
|
38 |
+
|
39 |
+
|
40 |
+
stocks_df.reset_index(inplace=True)
|
41 |
+
SP500.reset_index(inplace=True)
|
42 |
+
SP500.columns = ['Date','SP500']
|
43 |
+
stocks_df['Date'] = stocks_df['Date'].astype('datetime64[ns]')
|
44 |
+
stocks_df['Date'] = stocks_df['Date'].apply(lambda x:str(x)[:10])
|
45 |
+
stocks_df['Date'] = pd.to_datetime(stocks_df['Date'])
|
46 |
+
stocks_df = pd.merge(stocks_df, SP500, on='Date', how='inner')
|
47 |
+
|
48 |
+
col1, col2 = st.columns([1,1])
|
49 |
+
with col1:
|
50 |
+
st.markdown('### Dataframe head')
|
51 |
+
st.dataframe(stocks_df.head(), use_container_width=True)
|
52 |
+
|
53 |
+
with col2:
|
54 |
+
st.markdown('### Dataframe tail')
|
55 |
+
st.dataframe(stocks_df.tail(), use_container_width=True)
|
56 |
+
|
57 |
+
|
58 |
+
col1, col2 = st.columns([1,1])
|
59 |
+
with col1:
|
60 |
+
st.markdown('### Price of all the Stocks')
|
61 |
+
st.plotly_chart(capm_functions.interactive_plot(stocks_df))
|
62 |
+
|
63 |
+
|
64 |
+
with col2:
|
65 |
+
|
66 |
+
st.markdown('### Price of all the Stocks After Normalization')
|
67 |
+
st.plotly_chart(capm_functions.interactive_plot(capm_functions.normalize(stocks_df)))
|
68 |
+
|
69 |
+
stocks_daily_returns = capm_functions.daily_return(stocks_df)
|
70 |
+
#print(stocks_daily_returns.head())
|
71 |
+
|
72 |
+
beta = {}
|
73 |
+
alpha = {}
|
74 |
+
|
75 |
+
for i in stocks_daily_returns.columns:
|
76 |
+
if i !='Date' and i !='SP500':
|
77 |
+
b,a = capm_functions.calculate_beta(stocks_daily_returns,i)
|
78 |
+
|
79 |
+
beta[i]=b
|
80 |
+
alpha[i]=a
|
81 |
+
print(beta, alpha)
|
82 |
+
|
83 |
+
beta_df = pd.DataFrame(columns=['stock','Beta Value'])
|
84 |
+
beta_df['Stock'] = beta.keys()
|
85 |
+
beta_df['Beta value'] = [str(round(i,2)) for i in beta.values()]
|
86 |
+
|
87 |
+
|
88 |
+
with col1:
|
89 |
+
st.markdown('### Calculated Beta Value')
|
90 |
+
st.dataframe(beta_df, use_container_width=True)
|
91 |
+
|
92 |
+
|
93 |
+
rf = 0
|
94 |
+
rm = stocks_daily_returns['SP500'].mean()*252
|
95 |
+
|
96 |
+
return_df = pd.DataFrame()
|
97 |
+
return_value = []
|
98 |
+
for stock, value in beta.items():
|
99 |
+
return_value.append(str(round(rf+(value*(rf-rm)),2)))
|
100 |
+
return_df['Stock'] = stocks_list
|
101 |
+
|
102 |
+
return_df['Return value'] = return_value
|
103 |
+
|
104 |
+
with col2:
|
105 |
+
st.markdown('### Calculated Return using CAPM')
|
106 |
+
|
107 |
+
st.dataframe(return_df, use_container_width=True)
|
108 |
+
except:
|
109 |
+
st.write('Please select valid Input')
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
|
capm_functions.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import plotly.express as px
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
|
5 |
+
#function to plot interactive plotely chart
|
6 |
+
def interactive_plot(df):
|
7 |
+
fig = px.line()
|
8 |
+
for i in df.columns[1:]:
|
9 |
+
fig.add_scatter(x = df['Date'],y=df[i], name=i)
|
10 |
+
fig.update_layout(width=450, margin=dict(l=20,r=20,t=50,b=20),legend=dict(orientation = 'h', yanchor = 'bottom',y=1.02, xanchor='right',x=1,))
|
11 |
+
return fig
|
12 |
+
|
13 |
+
|
14 |
+
#function to normalize the prices based on the initial price
|
15 |
+
def normalize(df_2):
|
16 |
+
df = df_2.copy()
|
17 |
+
for i in df.columns[1:]:
|
18 |
+
df[i] = df[i]/df[i][0]
|
19 |
+
return df
|
20 |
+
|
21 |
+
|
22 |
+
#functions to calculate daily returns
|
23 |
+
def daily_return(df):
|
24 |
+
df_daily_return = df.copy()
|
25 |
+
for i in df.columns[1:]:
|
26 |
+
for j in range(1,len(df)):
|
27 |
+
df_daily_return[i][j] = ((df[i][j]-df[i][j-1]/df[i][j-1])*100)
|
28 |
+
df_daily_return[i][0] = 0
|
29 |
+
return df_daily_return
|
30 |
+
|
31 |
+
|
32 |
+
#functions to calculate beta
|
33 |
+
def calculate_beta(stocks_daily_return, stock):
|
34 |
+
rm = stocks_daily_return['SP500'].mean()*252
|
35 |
+
|
36 |
+
b, a = np.polyfit(stocks_daily_return['SP500'], stocks_daily_return[stock],1)
|
37 |
+
return b,a
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
yfinance
|
4 |
+
pandas_datareader
|
5 |
+
datetime
|
6 |
+
plotly-express
|