import plotly.express as px import numpy as np #function to plot interactive plotely chart def interactive_plot(df): fig = px.line() for i in df.columns[1:]: fig.add_scatter(x = df['Date'],y=df[i], name=i) fig.update_layout(width=450, margin=dict(l=20,r=20,t=50,b=20),legend=dict(orientation = 'h', yanchor = 'bottom',y=1.02, xanchor='right',x=1,)) return fig #function to normalize the prices based on the initial price def normalize(df_2): df = df_2.copy() for i in df.columns[1:]: df[i] = df[i]/df[i][0] return df #functions to calculate daily returns def daily_return(df): df_daily_return = df.copy() for i in df.columns[1:]: for j in range(1,len(df)): df_daily_return[i][j] = ((df[i][j]-df[i][j-1]/df[i][j-1])*100) df_daily_return[i][0] = 0 return df_daily_return #functions to calculate beta def calculate_beta(stocks_daily_return, stock): rm = stocks_daily_return['SP500'].mean()*252 b, a = np.polyfit(stocks_daily_return['SP500'], stocks_daily_return[stock],1) return b,a