Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModel, AutoTokenizer | |
import torch | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF") | |
model = AutoModel.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = system_message + "\n" + "\n".join([f"User: {h[0]}\nBot: {h[1]}" for h in history if h]) + f"\nUser: {message}" | |
inputs = tokenizer(messages, return_tensors="pt", truncation=True) | |
with torch.no_grad(): | |
output = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
yield response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly storyteller.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |