Spaces:
Sleeping
Sleeping
File size: 1,454 Bytes
7ab0ca2 b57fea6 7ab0ca2 b57fea6 7ab0ca2 b57fea6 ba78b2f b57fea6 7ab0ca2 b57fea6 7ab0ca2 ba78b2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF")
model = AutoModel.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = system_message + "\n" + "\n".join([f"User: {h[0]}\nBot: {h[1]}" for h in history if h]) + f"\nUser: {message}"
inputs = tokenizer(messages, return_tensors="pt", truncation=True)
with torch.no_grad():
output = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
yield response
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly storyteller.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch() |