panga12345 commited on
Commit
b57fea6
·
verified ·
1 Parent(s): ba78b2f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -31
app.py CHANGED
@@ -1,11 +1,10 @@
1
  import gradio as gr
2
- from llama_cpp import Llama
 
3
 
4
- # Load the model
5
- llm = Llama.from_pretrained(
6
- repo_id="mradermacher/Fimbulvetr-11B-v2-GGUF",
7
- filename="Fimbulvetr-11B-v2.IQ3_M.gguf",
8
- )
9
 
10
  def respond(
11
  message,
@@ -15,36 +14,25 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- # Generate response using llama_cpp
29
- response = ""
30
- stream = llm(
31
- messages=messages,
32
- max_tokens=max_tokens,
33
- temperature=temperature,
34
- top_p=top_p,
35
- stream=True
36
- )
37
-
38
- for output in stream:
39
- token = output["choices"][0]["text"]
40
- response += token
41
- yield response
42
 
43
- # Create Gradio ChatInterface
44
  demo = gr.ChatInterface(
45
  respond,
46
  additional_inputs=[
47
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
48
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
49
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
50
  gr.Slider(
 
1
  import gradio as gr
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import torch
4
 
5
+ # Load model and tokenizer
6
+ tokenizer = AutoTokenizer.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF")
7
+ model = AutoModel.from_pretrained("mradermacher/Fimbulvetr-11B-v2-GGUF")
 
 
8
 
9
  def respond(
10
  message,
 
14
  temperature,
15
  top_p,
16
  ):
17
+ messages = system_message + "\n" + "\n".join([f"User: {h[0]}\nBot: {h[1]}" for h in history if h]) + f"\nUser: {message}"
 
 
 
 
 
 
 
 
18
 
19
+ inputs = tokenizer(messages, return_tensors="pt", truncation=True)
20
+ with torch.no_grad():
21
+ output = model.generate(
22
+ **inputs,
23
+ max_new_tokens=max_tokens,
24
+ temperature=temperature,
25
+ top_p=top_p,
26
+ do_sample=True
27
+ )
28
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
29
+ yield response
30
+
 
 
31
 
 
32
  demo = gr.ChatInterface(
33
  respond,
34
  additional_inputs=[
35
+ gr.Textbox(value="You are a friendly storyteller.", label="System message"),
36
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
37
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
38
  gr.Slider(