NASA-Galileo / src /data /dataset.py
openfree's picture
Deploy from GitHub repository
b20c769 verified
import json
import logging
import math
import os
import warnings
from collections import OrderedDict
from copy import deepcopy
from pathlib import Path
from random import sample
from typing import Dict, Iterator, List, NamedTuple, Optional, Sequence, Tuple, Union, cast
from typing import OrderedDict as OrderedDictType
import h5py
import numpy as np
import rioxarray
import torch
import xarray as xr
from einops import rearrange, repeat
from torch.utils.data import Dataset as PyTorchDataset
from tqdm import tqdm
from .config import (
DATASET_OUTPUT_HW,
EE_BUCKET_TIFS,
EE_FOLDER_H5PYS,
EE_FOLDER_TIFS,
NUM_TIMESTEPS,
)
from .earthengine.eo import (
ALL_DYNAMIC_IN_TIME_BANDS,
DW_BANDS,
DW_DIV_VALUES,
DW_SHIFT_VALUES,
ERA5_BANDS,
LANDSCAN_BANDS,
LOCATION_BANDS,
S1_BANDS,
SPACE_BANDS,
SPACE_DIV_VALUES,
SPACE_SHIFT_VALUES,
SRTM_BANDS,
TC_BANDS,
TIME_BANDS,
TIME_DIV_VALUES,
TIME_SHIFT_VALUES,
VIIRS_BANDS,
WC_BANDS,
WC_DIV_VALUES,
WC_SHIFT_VALUES,
)
from .earthengine.eo import SPACE_TIME_BANDS as EO_SPACE_TIME_BANDS
from .earthengine.eo import SPACE_TIME_DIV_VALUES as EO_SPACE_TIME_DIV_VALUES
from .earthengine.eo import SPACE_TIME_SHIFT_VALUES as EO_SPACE_TIME_SHIFT_VALUES
from .earthengine.eo import STATIC_BANDS as EO_STATIC_BANDS
from .earthengine.eo import STATIC_DIV_VALUES as EO_STATIC_DIV_VALUES
from .earthengine.eo import STATIC_SHIFT_VALUES as EO_STATIC_SHIFT_VALUES
logger = logging.getLogger("__main__")
EO_DYNAMIC_IN_TIME_BANDS_NP = np.array(EO_SPACE_TIME_BANDS + TIME_BANDS)
SPACE_TIME_BANDS = EO_SPACE_TIME_BANDS + ["NDVI"]
SPACE_TIME_SHIFT_VALUES = np.append(EO_SPACE_TIME_SHIFT_VALUES, [0])
SPACE_TIME_DIV_VALUES = np.append(EO_SPACE_TIME_DIV_VALUES, [1])
SPACE_TIME_BANDS_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"S1": [SPACE_TIME_BANDS.index(b) for b in S1_BANDS],
"S2_RGB": [SPACE_TIME_BANDS.index(b) for b in ["B2", "B3", "B4"]],
"S2_Red_Edge": [SPACE_TIME_BANDS.index(b) for b in ["B5", "B6", "B7"]],
"S2_NIR_10m": [SPACE_TIME_BANDS.index(b) for b in ["B8"]],
"S2_NIR_20m": [SPACE_TIME_BANDS.index(b) for b in ["B8A"]],
"S2_SWIR": [SPACE_TIME_BANDS.index(b) for b in ["B11", "B12"]],
"NDVI": [SPACE_TIME_BANDS.index("NDVI")],
}
)
TIME_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"ERA5": [TIME_BANDS.index(b) for b in ERA5_BANDS],
"TC": [TIME_BANDS.index(b) for b in TC_BANDS],
"VIIRS": [TIME_BANDS.index(b) for b in VIIRS_BANDS],
}
)
SPACE_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"SRTM": [SPACE_BANDS.index(b) for b in SRTM_BANDS],
"DW": [SPACE_BANDS.index(b) for b in DW_BANDS],
"WC": [SPACE_BANDS.index(b) for b in WC_BANDS],
}
)
STATIC_DW_BANDS = [f"{x}_static" for x in DW_BANDS]
STATIC_WC_BANDS = [f"{x}_static" for x in WC_BANDS]
STATIC_BANDS = EO_STATIC_BANDS + STATIC_DW_BANDS + STATIC_WC_BANDS
STATIC_DIV_VALUES = np.append(EO_STATIC_DIV_VALUES, (DW_DIV_VALUES + WC_DIV_VALUES))
STATIC_SHIFT_VALUES = np.append(EO_STATIC_SHIFT_VALUES, (DW_SHIFT_VALUES + WC_SHIFT_VALUES))
STATIC_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"LS": [STATIC_BANDS.index(b) for b in LANDSCAN_BANDS],
"location": [STATIC_BANDS.index(b) for b in LOCATION_BANDS],
"DW_static": [STATIC_BANDS.index(b) for b in STATIC_DW_BANDS],
"WC_static": [STATIC_BANDS.index(b) for b in STATIC_WC_BANDS],
}
)
# if this changes the normalizer will need to index against something else
assert len(SPACE_TIME_BANDS) != len(SPACE_BANDS) != len(TIME_BANDS) != len(STATIC_BANDS)
class Normalizer:
# these are the bands we will replace with the 2*std computation
# if std = True
std_bands: Dict[int, list] = {
len(SPACE_TIME_BANDS): [b for b in SPACE_TIME_BANDS if b != "NDVI"],
len(SPACE_BANDS): SRTM_BANDS,
len(TIME_BANDS): TIME_BANDS,
len(STATIC_BANDS): LANDSCAN_BANDS,
}
def __init__(
self, std: bool = True, normalizing_dicts: Optional[Dict] = None, std_multiplier: float = 2
):
self.shift_div_dict = {
len(SPACE_TIME_BANDS): {
"shift": deepcopy(SPACE_TIME_SHIFT_VALUES),
"div": deepcopy(SPACE_TIME_DIV_VALUES),
},
len(SPACE_BANDS): {
"shift": deepcopy(SPACE_SHIFT_VALUES),
"div": deepcopy(SPACE_DIV_VALUES),
},
len(TIME_BANDS): {
"shift": deepcopy(TIME_SHIFT_VALUES),
"div": deepcopy(TIME_DIV_VALUES),
},
len(STATIC_BANDS): {
"shift": deepcopy(STATIC_SHIFT_VALUES),
"div": deepcopy(STATIC_DIV_VALUES),
},
}
print(self.shift_div_dict.keys())
self.normalizing_dicts = normalizing_dicts
if std:
name_to_bands = {
len(SPACE_TIME_BANDS): SPACE_TIME_BANDS,
len(SPACE_BANDS): SPACE_BANDS,
len(TIME_BANDS): TIME_BANDS,
len(STATIC_BANDS): STATIC_BANDS,
}
assert normalizing_dicts is not None
for key, val in normalizing_dicts.items():
if isinstance(key, str):
continue
bands_to_replace = self.std_bands[key]
for band in bands_to_replace:
band_idx = name_to_bands[key].index(band)
mean = val["mean"][band_idx]
std = val["std"][band_idx]
min_value = mean - (std_multiplier * std)
max_value = mean + (std_multiplier * std)
div = max_value - min_value
if div == 0:
raise ValueError(f"{band} has div value of 0")
self.shift_div_dict[key]["shift"][band_idx] = min_value
self.shift_div_dict[key]["div"][band_idx] = div
@staticmethod
def _normalize(x: np.ndarray, shift_values: np.ndarray, div_values: np.ndarray) -> np.ndarray:
x = (x - shift_values) / div_values
return x
def __call__(self, x: np.ndarray):
div_values = self.shift_div_dict[x.shape[-1]]["div"]
return self._normalize(x, self.shift_div_dict[x.shape[-1]]["shift"], div_values)
class DatasetOutput(NamedTuple):
space_time_x: np.ndarray
space_x: np.ndarray
time_x: np.ndarray
static_x: np.ndarray
months: np.ndarray
@classmethod
def concatenate(cls, datasetoutputs: Sequence["DatasetOutput"]) -> "DatasetOutput":
s_t_x = np.stack([o.space_time_x for o in datasetoutputs], axis=0)
sp_x = np.stack([o.space_x for o in datasetoutputs], axis=0)
t_x = np.stack([o.time_x for o in datasetoutputs], axis=0)
st_x = np.stack([o.static_x for o in datasetoutputs], axis=0)
months = np.stack([o.months for o in datasetoutputs], axis=0)
return cls(s_t_x, sp_x, t_x, st_x, months)
def normalize(self, normalizer: Optional[Normalizer]) -> "DatasetOutput":
if normalizer is None:
return self
return DatasetOutput(
normalizer(self.space_time_x).astype(np.half),
normalizer(self.space_x).astype(np.half),
normalizer(self.time_x).astype(np.half),
normalizer(self.static_x).astype(np.half),
self.months,
)
def in_pixel_batches(self, batch_size: int, window_size: int) -> Iterator["DatasetOutput"]:
if self.space_time_x.shape[0] % window_size != 0:
raise ValueError("DatasetOutput height must be divisible by the patch size")
if self.space_time_x.shape[1] % window_size != 0:
raise ValueError("DatasetOutput width must be divisible by the patch size")
# how many batches from the height dimension, how many from the width dimension?
h_b = self.space_time_x.shape[0] // window_size
w_b = self.space_time_x.shape[1] // window_size
flat_s_t_x = rearrange(
self.space_time_x,
"(h_b h) (w_b w) t d -> (h_b w_b) h w t d",
h=window_size,
w=window_size,
h_b=h_b,
w_b=w_b,
)
flat_sp_x = rearrange(
self.space_x,
"(h_b h) (w_b w) d -> (h_b w_b) h w d",
h=window_size,
w=window_size,
h_b=h_b,
w_b=w_b,
)
# static in space modalities will just get repeated per batch
cur_idx = 0
while cur_idx < flat_s_t_x.shape[0]:
cur_idx_s_t_x = flat_s_t_x[cur_idx : cur_idx + batch_size].copy()
b = cur_idx_s_t_x.shape[0]
yield DatasetOutput(
space_time_x=cur_idx_s_t_x,
space_x=flat_sp_x[cur_idx : cur_idx + batch_size].copy(),
time_x=repeat(self.time_x, "t d -> b t d", b=b),
static_x=repeat(self.static_x, "d -> b d", b=b),
months=repeat(self.months, "t -> b t", b=b),
)
cur_idx += batch_size
class ListOfDatasetOutputs(NamedTuple):
space_time_x: List[np.ndarray]
space_x: List[np.ndarray]
time_x: List[np.ndarray]
static_x: List[np.ndarray]
months: List[np.ndarray]
def to_datasetoutput(self) -> DatasetOutput:
return DatasetOutput(
np.stack(self.space_time_x, axis=0),
np.stack(self.space_x, axis=0),
np.stack(self.time_x, axis=0),
np.stack(self.static_x, axis=0),
np.stack(self.months, axis=0),
)
def to_cartesian(
lat: Union[float, np.ndarray, torch.Tensor], lon: Union[float, np.ndarray, torch.Tensor]
) -> Union[np.ndarray, torch.Tensor]:
if isinstance(lat, float):
assert -90 <= lat <= 90, f"lat out of range ({lat}). Make sure you are in EPSG:4326"
assert -180 <= lon <= 180, f"lon out of range ({lon}). Make sure you are in EPSG:4326"
assert isinstance(lon, float), f"Expected float got {type(lon)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x = math.cos(lat) * math.cos(lon)
y = math.cos(lat) * math.sin(lon)
z = math.sin(lat)
return np.array([x, y, z])
elif isinstance(lon, np.ndarray):
assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326"
assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326"
assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326"
assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326"
assert isinstance(lat, np.ndarray), f"Expected np.ndarray got {type(lat)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x_np = np.cos(lat) * np.cos(lon)
y_np = np.cos(lat) * np.sin(lon)
z_np = np.sin(lat)
return np.stack([x_np, y_np, z_np], axis=-1)
elif isinstance(lon, torch.Tensor):
assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326"
assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326"
assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326"
assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326"
assert isinstance(lat, torch.Tensor), f"Expected torch.Tensor got {type(lat)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x_t = torch.cos(lat) * torch.cos(lon)
y_t = torch.cos(lat) * torch.sin(lon)
z_t = torch.sin(lat)
return torch.stack([x_t, y_t, z_t], dim=-1)
else:
raise AssertionError(f"Unexpected input type {type(lon)}")
class Dataset(PyTorchDataset):
def __init__(
self,
data_folder: Path,
download: bool = True,
h5py_folder: Optional[Path] = None,
h5pys_only: bool = False,
output_hw: int = DATASET_OUTPUT_HW,
output_timesteps: int = NUM_TIMESTEPS,
normalizer: Optional[Normalizer] = None,
):
self.data_folder = data_folder
self.h5pys_only = h5pys_only
self.h5py_folder = h5py_folder
self.cache = False
self.normalizer = normalizer
if h5py_folder is not None:
self.cache = True
if h5pys_only:
assert h5py_folder is not None, "Can't use h5pys only if there is no cache folder"
self.tifs: List[Path] = []
if download:
self.download_h5pys(h5py_folder)
self.h5pys = list(h5py_folder.glob("*.h5"))
else:
if download:
self.download_tifs(data_folder)
self.tifs = []
tifs = list(data_folder.glob("*.tif")) + list(data_folder.glob("*.tiff"))
for tif in tifs:
try:
_ = self.start_month_from_file(tif)
self.tifs.append(tif)
except IndexError:
warnings.warn(f"IndexError for {tif}")
self.h5pys = []
self.output_hw = output_hw
self.output_timesteps = output_timesteps
def __len__(self) -> int:
if self.h5pys_only:
return len(self.h5pys)
return len(self.tifs)
@staticmethod
def download_tifs(data_folder):
# Download files (faster than using Python API)
os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_TIFS} {data_folder}")
@staticmethod
def download_h5pys(data_folder):
# Download files (faster than using Python API)
os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_H5PYS} {data_folder}")
@staticmethod
def return_subset_indices(
total_h,
total_w,
total_t,
size: int,
num_timesteps: int,
) -> Tuple[int, int, int]:
"""
space_time_x: array of shape [H, W, T, D]
space_x: array of shape [H, W, D]
time_x: array of shape [T, D]
static_x: array of shape [D]
size must be greater or equal to H & W
"""
possible_h = total_h - size
possible_w = total_w - size
assert (possible_h >= 0) & (possible_w >= 0)
possible_t = total_t - num_timesteps
assert possible_t >= 0
if possible_h > 0:
start_h = np.random.choice(possible_h)
else:
start_h = possible_h
if possible_w > 0:
start_w = np.random.choice(possible_w)
else:
start_w = possible_w
if possible_t > 0:
start_t = np.random.choice(possible_t)
else:
start_t = possible_t
return start_h, start_w, start_t
@staticmethod
def subset_image(
space_time_x: np.ndarray,
space_x: np.ndarray,
time_x: np.ndarray,
static_x: np.ndarray,
months: np.ndarray,
size: int,
num_timesteps: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
space_time_x: array of shape [H, W, T, D]
space_x: array of shape [H, W, D]
time_x: array of shape [T, D]
static_x: array of shape [D]
size must be greater or equal to H & W
"""
assert (space_time_x.shape[0] == space_x.shape[0]) & (
space_time_x.shape[1] == space_x.shape[1]
)
assert space_time_x.shape[2] == time_x.shape[0]
possible_h = space_time_x.shape[0] - size
possible_w = space_time_x.shape[1] - size
assert (possible_h >= 0) & (possible_w >= 0)
possible_t = space_time_x.shape[2] - num_timesteps
assert possible_t >= 0
if possible_h > 0:
start_h = np.random.choice(possible_h)
else:
start_h = possible_h
if possible_w > 0:
start_w = np.random.choice(possible_w)
else:
start_w = possible_w
if possible_t > 0:
start_t = np.random.choice(possible_t)
else:
start_t = possible_t
return (
space_time_x[
start_h : start_h + size,
start_w : start_w + size,
start_t : start_t + num_timesteps,
],
space_x[start_h : start_h + size, start_w : start_w + size],
time_x[start_t : start_t + num_timesteps],
static_x,
months[start_t : start_t + num_timesteps],
)
@staticmethod
def _fillna(data: np.ndarray, bands_np: np.ndarray):
"""Fill in the missing values in the data array"""
if data.shape[-1] != len(bands_np):
raise ValueError(f"Expected data to have {len(bands_np)} bands - got {data.shape[-1]}")
is_nan_inf = np.isnan(data) | np.isinf(data)
if not is_nan_inf.any():
return data
if len(data.shape) <= 2:
return np.nan_to_num(data, nan=0)
if len(data.shape) == 3:
has_time = False
elif len(data.shape) == 4:
has_time = True
else:
raise ValueError(
f"Expected data to be 3D or 4D (x, y, (time), band) - got {data.shape}"
)
# treat infinities as NaNs
data = np.nan_to_num(data, nan=np.nan, posinf=np.nan, neginf=np.nan)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
mean_per_time_band = np.nanmean(data, axis=(0, 1)) # t, b or b
mean_per_time_band = np.nan_to_num(mean_per_time_band, nan=0, posinf=0, neginf=0)
assert not (np.isnan(mean_per_time_band).any() | np.isinf(mean_per_time_band).any())
if is_nan_inf.any():
if has_time:
means_to_fill = (
repeat(
np.nanmean(mean_per_time_band, axis=0),
"b -> h w t b",
h=data.shape[0],
w=data.shape[1],
t=data.shape[2],
)
* is_nan_inf
)
else:
means_to_fill = (
repeat(mean_per_time_band, "b -> h w b", h=data.shape[0], w=data.shape[1])
* is_nan_inf
)
data = np.nan_to_num(data, nan=0, posinf=0, neginf=0) + means_to_fill
return data
def tif_to_h5py_path(self, tif_path: Path) -> Path:
assert self.h5py_folder is not None
tif_name = tif_path.stem
return self.h5py_folder / f"{tif_name}.h5"
@staticmethod
def start_month_from_file(tif_path: Path) -> int:
start_date = tif_path.name.partition("dates=")[2][:10]
start_month = int(start_date.split("-")[1])
return start_month
@classmethod
def month_array_from_file(cls, tif_path: Path, num_timesteps: int) -> np.ndarray:
"""
Given a filepath and num_timesteps, extract start_month and return an array of
months where months[idx] is the month for list(range(num_timesteps))[i]
"""
# assumes all files are exported with filenames including:
# *dates=<start_date>*, where the start_date is in a YYYY-MM-dd format
start_month = cls.start_month_from_file(tif_path)
# >>> np.fmod(np.array([9., 10, 11, 12, 13, 14]), 12)
# array([ 9., 10., 11., 0., 1., 2.])
# - 1 because we want to index from 0
return np.fmod(np.arange(start_month - 1, start_month - 1 + num_timesteps), 12)
@classmethod
def _tif_to_array(cls, tif_path: Path) -> DatasetOutput:
with cast(xr.Dataset, rioxarray.open_rasterio(tif_path)) as data:
# [all_combined_bands, H, W]
# all_combined_bands includes all dynamic-in-time bands
# interleaved for all timesteps
# followed by the static-in-time bands
values = cast(np.ndarray, data.values)
lon = np.mean(cast(np.ndarray, data.x)).item()
lat = np.mean(cast(np.ndarray, data.y)).item()
# this is a bit hackey but is a unique edge case for locations,
# which are not part of the exported bands but are instead
# computed here
static_bands_in_tif = len(EO_STATIC_BANDS) - len(LOCATION_BANDS)
num_timesteps = (values.shape[0] - len(SPACE_BANDS) - static_bands_in_tif) / len(
ALL_DYNAMIC_IN_TIME_BANDS
)
assert num_timesteps % 1 == 0, f"{tif_path} has incorrect number of channels"
dynamic_in_time_x = rearrange(
values[: -(len(SPACE_BANDS) + static_bands_in_tif)],
"(t c) h w -> h w t c",
c=len(ALL_DYNAMIC_IN_TIME_BANDS),
t=int(num_timesteps),
)
dynamic_in_time_x = cls._fillna(dynamic_in_time_x, EO_DYNAMIC_IN_TIME_BANDS_NP)
space_time_x = dynamic_in_time_x[:, :, :, : -len(TIME_BANDS)]
# calculate indices, which have shape [h, w, t, 1]
ndvi = cls.calculate_ndi(space_time_x, band_1="B8", band_2="B4")
space_time_x = np.concatenate((space_time_x, ndvi), axis=-1)
time_x = dynamic_in_time_x[:, :, :, -len(TIME_BANDS) :]
time_x = np.nanmean(time_x, axis=(0, 1))
space_x = rearrange(
values[-(len(SPACE_BANDS) + static_bands_in_tif) : -static_bands_in_tif],
"c h w -> h w c",
)
space_x = cls._fillna(space_x, np.array(SPACE_BANDS))
static_x = values[-static_bands_in_tif:]
# add DW_STATIC and WC_STATIC
dw_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in DW_BANDS]]
wc_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in WC_BANDS]]
static_x = np.concatenate(
[
np.nanmean(static_x, axis=(1, 2)),
to_cartesian(lat, lon),
np.nanmean(dw_bands, axis=(0, 1)),
np.nanmean(wc_bands, axis=(0, 1)),
]
)
static_x = cls._fillna(static_x, np.array(STATIC_BANDS))
months = cls.month_array_from_file(tif_path, int(num_timesteps))
try:
assert not np.isnan(space_time_x).any(), f"NaNs in s_t_x for {tif_path}"
assert not np.isnan(space_x).any(), f"NaNs in sp_x for {tif_path}"
assert not np.isnan(time_x).any(), f"NaNs in t_x for {tif_path}"
assert not np.isnan(static_x).any(), f"NaNs in st_x for {tif_path}"
assert not np.isinf(space_time_x).any(), f"Infs in s_t_x for {tif_path}"
assert not np.isinf(space_x).any(), f"Infs in sp_x for {tif_path}"
assert not np.isinf(time_x).any(), f"Infs in t_x for {tif_path}"
assert not np.isinf(static_x).any(), f"Infs in st_x for {tif_path}"
return DatasetOutput(
space_time_x.astype(np.half),
space_x.astype(np.half),
time_x.astype(np.half),
static_x.astype(np.half),
months,
)
except AssertionError as e:
raise e
def _tif_to_array_with_checks(self, idx):
tif_path = self.tifs[idx]
try:
output = self._tif_to_array(tif_path)
return output
except Exception as e:
print(f"Replacing tif {tif_path} due to {e}")
if idx == 0:
new_idx = idx + 1
else:
new_idx = idx - 1
self.tifs[idx] = self.tifs[new_idx]
tif_path = self.tifs[idx]
output = self._tif_to_array(tif_path)
return output
def load_tif(self, idx: int) -> DatasetOutput:
if self.h5py_folder is None:
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
return DatasetOutput(
*self.subset_image(
s_t_x,
sp_x,
t_x,
st_x,
months,
size=self.output_hw,
num_timesteps=self.output_timesteps,
)
)
else:
h5py_path = self.tif_to_h5py_path(self.tifs[idx])
if h5py_path.exists():
try:
return self.read_and_slice_h5py_file(h5py_path)
except Exception as e:
logger.warn(f"Exception {e} for {self.tifs[idx]}")
h5py_path.unlink()
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem)
return DatasetOutput(
*self.subset_image(
s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps
)
)
else:
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem)
return DatasetOutput(
*self.subset_image(
s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps
)
)
def save_h5py(self, s_t_x, sp_x, t_x, st_x, tif_stem):
assert self.h5py_folder is not None
with h5py.File(self.h5py_folder / f"{tif_stem}.h5", "w") as hf:
hf.create_dataset("s_t_x", data=s_t_x)
hf.create_dataset("sp_x", data=sp_x)
hf.create_dataset("t_x", data=t_x)
hf.create_dataset("st_x", data=st_x)
@staticmethod
def calculate_ndi(input_array: np.ndarray, band_1: str, band_2: str) -> np.ndarray:
r"""
Given an input array of shape [h, w, t, bands]
where bands == len(EO_DYNAMIC_IN_TIME_BANDS_NP), returns an array of shape
[h, w, t, 1] representing NDI,
(band_1 - band_2) / (band_1 + band_2)
"""
band_1_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_1)]
band_2_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_2)]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="invalid value encountered in divide")
# suppress the following warning
# RuntimeWarning: invalid value encountered in divide
# for cases where near_infrared + red == 0
# since this is handled in the where condition
return np.expand_dims(
np.where(
(band_1_np + band_2_np) > 0,
(band_1_np - band_2_np) / (band_1_np + band_2_np),
0,
),
-1,
)
def read_and_slice_h5py_file(self, h5py_path: Path):
with h5py.File(h5py_path, "r") as hf:
h, w, t, _ = hf["s_t_x"].shape
start_h, start_w, start_t = self.return_subset_indices(
h, w, t, self.output_hw, self.output_timesteps
)
months = self.month_array_from_file(h5py_path, t)
output = DatasetOutput(
hf["s_t_x"][
start_h : start_h + self.output_hw,
start_w : start_w + self.output_hw,
start_t : start_t + self.output_timesteps,
],
hf["sp_x"][
start_h : start_h + self.output_hw,
start_w : start_w + self.output_hw,
],
hf["t_x"][start_t : start_t + self.output_timesteps],
hf["st_x"][:],
months[start_t : start_t + self.output_timesteps],
)
return output
def __getitem__(self, idx):
if self.h5pys_only:
return self.read_and_slice_h5py_file(self.h5pys[idx]).normalize(self.normalizer)
else:
return self.load_tif(idx).normalize(self.normalizer)
def process_h5pys(self):
# iterate through the dataset and save it all as h5pys
assert self.h5py_folder is not None
assert not self.h5pys_only
assert self.cache
for i in tqdm(range(len(self))):
# loading the tifs also saves them
# if they don't exist
_ = self[i]
@staticmethod
def load_normalization_values(path: Path):
if not path.exists():
raise ValueError(f"No file found at path {path}")
with path.open("r") as f:
norm_dict = json.load(f)
# we computed the normalizing dict using the same datset
output_dict = {}
for key, val in norm_dict.items():
if "n" not in key:
output_dict[int(key)] = val
else:
output_dict[key] = val
return output_dict
def compute_normalization_values(
self,
output_hw: int = 96,
output_timesteps: int = 24,
estimate_from: Optional[int] = 10000,
):
org_hw = self.output_hw
self.output_hw = output_hw
org_t = self.output_timesteps
self.output_timesteps = output_timesteps
if estimate_from is not None:
indices_to_sample = sample(list(range(len(self))), k=estimate_from)
else:
indices_to_sample = list(range(len(self)))
output = ListOfDatasetOutputs([], [], [], [], [])
for i in tqdm(indices_to_sample):
s_t_x, sp_x, t_x, st_x, months = self[i]
output.space_time_x.append(s_t_x.astype(np.float64))
output.space_x.append(sp_x.astype(np.float64))
output.time_x.append(t_x.astype(np.float64))
output.static_x.append(st_x.astype(np.float64))
output.months.append(months)
d_o = output.to_datasetoutput()
norm_dict = {
"total_n": len(self),
"sampled_n": len(indices_to_sample),
len(SPACE_TIME_BANDS): {
"mean": d_o.space_time_x.mean(axis=(0, 1, 2, 3)).tolist(),
"std": d_o.space_time_x.std(axis=(0, 1, 2, 3)).tolist(),
},
len(SPACE_BANDS): {
"mean": d_o.space_x.mean(axis=(0, 1, 2)).tolist(),
"std": d_o.space_x.std(axis=(0, 1, 2)).tolist(),
},
len(TIME_BANDS): {
"mean": d_o.time_x.mean(axis=(0, 1)).tolist(),
"std": d_o.time_x.std(axis=(0, 1)).tolist(),
},
len(STATIC_BANDS): {
"mean": d_o.static_x.mean(axis=0).tolist(),
"std": d_o.static_x.std(axis=0).tolist(),
},
}
self.output_hw = org_hw
self.output_timesteps = org_t
return norm_dict