import json import logging import math import os import warnings from collections import OrderedDict from copy import deepcopy from pathlib import Path from random import sample from typing import Dict, Iterator, List, NamedTuple, Optional, Sequence, Tuple, Union, cast from typing import OrderedDict as OrderedDictType import h5py import numpy as np import rioxarray import torch import xarray as xr from einops import rearrange, repeat from torch.utils.data import Dataset as PyTorchDataset from tqdm import tqdm from .config import ( DATASET_OUTPUT_HW, EE_BUCKET_TIFS, EE_FOLDER_H5PYS, EE_FOLDER_TIFS, NUM_TIMESTEPS, ) from .earthengine.eo import ( ALL_DYNAMIC_IN_TIME_BANDS, DW_BANDS, DW_DIV_VALUES, DW_SHIFT_VALUES, ERA5_BANDS, LANDSCAN_BANDS, LOCATION_BANDS, S1_BANDS, SPACE_BANDS, SPACE_DIV_VALUES, SPACE_SHIFT_VALUES, SRTM_BANDS, TC_BANDS, TIME_BANDS, TIME_DIV_VALUES, TIME_SHIFT_VALUES, VIIRS_BANDS, WC_BANDS, WC_DIV_VALUES, WC_SHIFT_VALUES, ) from .earthengine.eo import SPACE_TIME_BANDS as EO_SPACE_TIME_BANDS from .earthengine.eo import SPACE_TIME_DIV_VALUES as EO_SPACE_TIME_DIV_VALUES from .earthengine.eo import SPACE_TIME_SHIFT_VALUES as EO_SPACE_TIME_SHIFT_VALUES from .earthengine.eo import STATIC_BANDS as EO_STATIC_BANDS from .earthengine.eo import STATIC_DIV_VALUES as EO_STATIC_DIV_VALUES from .earthengine.eo import STATIC_SHIFT_VALUES as EO_STATIC_SHIFT_VALUES logger = logging.getLogger("__main__") EO_DYNAMIC_IN_TIME_BANDS_NP = np.array(EO_SPACE_TIME_BANDS + TIME_BANDS) SPACE_TIME_BANDS = EO_SPACE_TIME_BANDS + ["NDVI"] SPACE_TIME_SHIFT_VALUES = np.append(EO_SPACE_TIME_SHIFT_VALUES, [0]) SPACE_TIME_DIV_VALUES = np.append(EO_SPACE_TIME_DIV_VALUES, [1]) SPACE_TIME_BANDS_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict( { "S1": [SPACE_TIME_BANDS.index(b) for b in S1_BANDS], "S2_RGB": [SPACE_TIME_BANDS.index(b) for b in ["B2", "B3", "B4"]], "S2_Red_Edge": [SPACE_TIME_BANDS.index(b) for b in ["B5", "B6", "B7"]], "S2_NIR_10m": [SPACE_TIME_BANDS.index(b) for b in ["B8"]], "S2_NIR_20m": [SPACE_TIME_BANDS.index(b) for b in ["B8A"]], "S2_SWIR": [SPACE_TIME_BANDS.index(b) for b in ["B11", "B12"]], "NDVI": [SPACE_TIME_BANDS.index("NDVI")], } ) TIME_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict( { "ERA5": [TIME_BANDS.index(b) for b in ERA5_BANDS], "TC": [TIME_BANDS.index(b) for b in TC_BANDS], "VIIRS": [TIME_BANDS.index(b) for b in VIIRS_BANDS], } ) SPACE_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict( { "SRTM": [SPACE_BANDS.index(b) for b in SRTM_BANDS], "DW": [SPACE_BANDS.index(b) for b in DW_BANDS], "WC": [SPACE_BANDS.index(b) for b in WC_BANDS], } ) STATIC_DW_BANDS = [f"{x}_static" for x in DW_BANDS] STATIC_WC_BANDS = [f"{x}_static" for x in WC_BANDS] STATIC_BANDS = EO_STATIC_BANDS + STATIC_DW_BANDS + STATIC_WC_BANDS STATIC_DIV_VALUES = np.append(EO_STATIC_DIV_VALUES, (DW_DIV_VALUES + WC_DIV_VALUES)) STATIC_SHIFT_VALUES = np.append(EO_STATIC_SHIFT_VALUES, (DW_SHIFT_VALUES + WC_SHIFT_VALUES)) STATIC_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict( { "LS": [STATIC_BANDS.index(b) for b in LANDSCAN_BANDS], "location": [STATIC_BANDS.index(b) for b in LOCATION_BANDS], "DW_static": [STATIC_BANDS.index(b) for b in STATIC_DW_BANDS], "WC_static": [STATIC_BANDS.index(b) for b in STATIC_WC_BANDS], } ) # if this changes the normalizer will need to index against something else assert len(SPACE_TIME_BANDS) != len(SPACE_BANDS) != len(TIME_BANDS) != len(STATIC_BANDS) class Normalizer: # these are the bands we will replace with the 2*std computation # if std = True std_bands: Dict[int, list] = { len(SPACE_TIME_BANDS): [b for b in SPACE_TIME_BANDS if b != "NDVI"], len(SPACE_BANDS): SRTM_BANDS, len(TIME_BANDS): TIME_BANDS, len(STATIC_BANDS): LANDSCAN_BANDS, } def __init__( self, std: bool = True, normalizing_dicts: Optional[Dict] = None, std_multiplier: float = 2 ): self.shift_div_dict = { len(SPACE_TIME_BANDS): { "shift": deepcopy(SPACE_TIME_SHIFT_VALUES), "div": deepcopy(SPACE_TIME_DIV_VALUES), }, len(SPACE_BANDS): { "shift": deepcopy(SPACE_SHIFT_VALUES), "div": deepcopy(SPACE_DIV_VALUES), }, len(TIME_BANDS): { "shift": deepcopy(TIME_SHIFT_VALUES), "div": deepcopy(TIME_DIV_VALUES), }, len(STATIC_BANDS): { "shift": deepcopy(STATIC_SHIFT_VALUES), "div": deepcopy(STATIC_DIV_VALUES), }, } print(self.shift_div_dict.keys()) self.normalizing_dicts = normalizing_dicts if std: name_to_bands = { len(SPACE_TIME_BANDS): SPACE_TIME_BANDS, len(SPACE_BANDS): SPACE_BANDS, len(TIME_BANDS): TIME_BANDS, len(STATIC_BANDS): STATIC_BANDS, } assert normalizing_dicts is not None for key, val in normalizing_dicts.items(): if isinstance(key, str): continue bands_to_replace = self.std_bands[key] for band in bands_to_replace: band_idx = name_to_bands[key].index(band) mean = val["mean"][band_idx] std = val["std"][band_idx] min_value = mean - (std_multiplier * std) max_value = mean + (std_multiplier * std) div = max_value - min_value if div == 0: raise ValueError(f"{band} has div value of 0") self.shift_div_dict[key]["shift"][band_idx] = min_value self.shift_div_dict[key]["div"][band_idx] = div @staticmethod def _normalize(x: np.ndarray, shift_values: np.ndarray, div_values: np.ndarray) -> np.ndarray: x = (x - shift_values) / div_values return x def __call__(self, x: np.ndarray): div_values = self.shift_div_dict[x.shape[-1]]["div"] return self._normalize(x, self.shift_div_dict[x.shape[-1]]["shift"], div_values) class DatasetOutput(NamedTuple): space_time_x: np.ndarray space_x: np.ndarray time_x: np.ndarray static_x: np.ndarray months: np.ndarray @classmethod def concatenate(cls, datasetoutputs: Sequence["DatasetOutput"]) -> "DatasetOutput": s_t_x = np.stack([o.space_time_x for o in datasetoutputs], axis=0) sp_x = np.stack([o.space_x for o in datasetoutputs], axis=0) t_x = np.stack([o.time_x for o in datasetoutputs], axis=0) st_x = np.stack([o.static_x for o in datasetoutputs], axis=0) months = np.stack([o.months for o in datasetoutputs], axis=0) return cls(s_t_x, sp_x, t_x, st_x, months) def normalize(self, normalizer: Optional[Normalizer]) -> "DatasetOutput": if normalizer is None: return self return DatasetOutput( normalizer(self.space_time_x).astype(np.half), normalizer(self.space_x).astype(np.half), normalizer(self.time_x).astype(np.half), normalizer(self.static_x).astype(np.half), self.months, ) def in_pixel_batches(self, batch_size: int, window_size: int) -> Iterator["DatasetOutput"]: if self.space_time_x.shape[0] % window_size != 0: raise ValueError("DatasetOutput height must be divisible by the patch size") if self.space_time_x.shape[1] % window_size != 0: raise ValueError("DatasetOutput width must be divisible by the patch size") # how many batches from the height dimension, how many from the width dimension? h_b = self.space_time_x.shape[0] // window_size w_b = self.space_time_x.shape[1] // window_size flat_s_t_x = rearrange( self.space_time_x, "(h_b h) (w_b w) t d -> (h_b w_b) h w t d", h=window_size, w=window_size, h_b=h_b, w_b=w_b, ) flat_sp_x = rearrange( self.space_x, "(h_b h) (w_b w) d -> (h_b w_b) h w d", h=window_size, w=window_size, h_b=h_b, w_b=w_b, ) # static in space modalities will just get repeated per batch cur_idx = 0 while cur_idx < flat_s_t_x.shape[0]: cur_idx_s_t_x = flat_s_t_x[cur_idx : cur_idx + batch_size].copy() b = cur_idx_s_t_x.shape[0] yield DatasetOutput( space_time_x=cur_idx_s_t_x, space_x=flat_sp_x[cur_idx : cur_idx + batch_size].copy(), time_x=repeat(self.time_x, "t d -> b t d", b=b), static_x=repeat(self.static_x, "d -> b d", b=b), months=repeat(self.months, "t -> b t", b=b), ) cur_idx += batch_size class ListOfDatasetOutputs(NamedTuple): space_time_x: List[np.ndarray] space_x: List[np.ndarray] time_x: List[np.ndarray] static_x: List[np.ndarray] months: List[np.ndarray] def to_datasetoutput(self) -> DatasetOutput: return DatasetOutput( np.stack(self.space_time_x, axis=0), np.stack(self.space_x, axis=0), np.stack(self.time_x, axis=0), np.stack(self.static_x, axis=0), np.stack(self.months, axis=0), ) def to_cartesian( lat: Union[float, np.ndarray, torch.Tensor], lon: Union[float, np.ndarray, torch.Tensor] ) -> Union[np.ndarray, torch.Tensor]: if isinstance(lat, float): assert -90 <= lat <= 90, f"lat out of range ({lat}). Make sure you are in EPSG:4326" assert -180 <= lon <= 180, f"lon out of range ({lon}). Make sure you are in EPSG:4326" assert isinstance(lon, float), f"Expected float got {type(lon)}" # transform to radians lat = lat * math.pi / 180 lon = lon * math.pi / 180 x = math.cos(lat) * math.cos(lon) y = math.cos(lat) * math.sin(lon) z = math.sin(lat) return np.array([x, y, z]) elif isinstance(lon, np.ndarray): assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326" assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326" assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326" assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326" assert isinstance(lat, np.ndarray), f"Expected np.ndarray got {type(lat)}" # transform to radians lat = lat * math.pi / 180 lon = lon * math.pi / 180 x_np = np.cos(lat) * np.cos(lon) y_np = np.cos(lat) * np.sin(lon) z_np = np.sin(lat) return np.stack([x_np, y_np, z_np], axis=-1) elif isinstance(lon, torch.Tensor): assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326" assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326" assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326" assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326" assert isinstance(lat, torch.Tensor), f"Expected torch.Tensor got {type(lat)}" # transform to radians lat = lat * math.pi / 180 lon = lon * math.pi / 180 x_t = torch.cos(lat) * torch.cos(lon) y_t = torch.cos(lat) * torch.sin(lon) z_t = torch.sin(lat) return torch.stack([x_t, y_t, z_t], dim=-1) else: raise AssertionError(f"Unexpected input type {type(lon)}") class Dataset(PyTorchDataset): def __init__( self, data_folder: Path, download: bool = True, h5py_folder: Optional[Path] = None, h5pys_only: bool = False, output_hw: int = DATASET_OUTPUT_HW, output_timesteps: int = NUM_TIMESTEPS, normalizer: Optional[Normalizer] = None, ): self.data_folder = data_folder self.h5pys_only = h5pys_only self.h5py_folder = h5py_folder self.cache = False self.normalizer = normalizer if h5py_folder is not None: self.cache = True if h5pys_only: assert h5py_folder is not None, "Can't use h5pys only if there is no cache folder" self.tifs: List[Path] = [] if download: self.download_h5pys(h5py_folder) self.h5pys = list(h5py_folder.glob("*.h5")) else: if download: self.download_tifs(data_folder) self.tifs = [] tifs = list(data_folder.glob("*.tif")) + list(data_folder.glob("*.tiff")) for tif in tifs: try: _ = self.start_month_from_file(tif) self.tifs.append(tif) except IndexError: warnings.warn(f"IndexError for {tif}") self.h5pys = [] self.output_hw = output_hw self.output_timesteps = output_timesteps def __len__(self) -> int: if self.h5pys_only: return len(self.h5pys) return len(self.tifs) @staticmethod def download_tifs(data_folder): # Download files (faster than using Python API) os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_TIFS} {data_folder}") @staticmethod def download_h5pys(data_folder): # Download files (faster than using Python API) os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_H5PYS} {data_folder}") @staticmethod def return_subset_indices( total_h, total_w, total_t, size: int, num_timesteps: int, ) -> Tuple[int, int, int]: """ space_time_x: array of shape [H, W, T, D] space_x: array of shape [H, W, D] time_x: array of shape [T, D] static_x: array of shape [D] size must be greater or equal to H & W """ possible_h = total_h - size possible_w = total_w - size assert (possible_h >= 0) & (possible_w >= 0) possible_t = total_t - num_timesteps assert possible_t >= 0 if possible_h > 0: start_h = np.random.choice(possible_h) else: start_h = possible_h if possible_w > 0: start_w = np.random.choice(possible_w) else: start_w = possible_w if possible_t > 0: start_t = np.random.choice(possible_t) else: start_t = possible_t return start_h, start_w, start_t @staticmethod def subset_image( space_time_x: np.ndarray, space_x: np.ndarray, time_x: np.ndarray, static_x: np.ndarray, months: np.ndarray, size: int, num_timesteps: int, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ space_time_x: array of shape [H, W, T, D] space_x: array of shape [H, W, D] time_x: array of shape [T, D] static_x: array of shape [D] size must be greater or equal to H & W """ assert (space_time_x.shape[0] == space_x.shape[0]) & ( space_time_x.shape[1] == space_x.shape[1] ) assert space_time_x.shape[2] == time_x.shape[0] possible_h = space_time_x.shape[0] - size possible_w = space_time_x.shape[1] - size assert (possible_h >= 0) & (possible_w >= 0) possible_t = space_time_x.shape[2] - num_timesteps assert possible_t >= 0 if possible_h > 0: start_h = np.random.choice(possible_h) else: start_h = possible_h if possible_w > 0: start_w = np.random.choice(possible_w) else: start_w = possible_w if possible_t > 0: start_t = np.random.choice(possible_t) else: start_t = possible_t return ( space_time_x[ start_h : start_h + size, start_w : start_w + size, start_t : start_t + num_timesteps, ], space_x[start_h : start_h + size, start_w : start_w + size], time_x[start_t : start_t + num_timesteps], static_x, months[start_t : start_t + num_timesteps], ) @staticmethod def _fillna(data: np.ndarray, bands_np: np.ndarray): """Fill in the missing values in the data array""" if data.shape[-1] != len(bands_np): raise ValueError(f"Expected data to have {len(bands_np)} bands - got {data.shape[-1]}") is_nan_inf = np.isnan(data) | np.isinf(data) if not is_nan_inf.any(): return data if len(data.shape) <= 2: return np.nan_to_num(data, nan=0) if len(data.shape) == 3: has_time = False elif len(data.shape) == 4: has_time = True else: raise ValueError( f"Expected data to be 3D or 4D (x, y, (time), band) - got {data.shape}" ) # treat infinities as NaNs data = np.nan_to_num(data, nan=np.nan, posinf=np.nan, neginf=np.nan) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) mean_per_time_band = np.nanmean(data, axis=(0, 1)) # t, b or b mean_per_time_band = np.nan_to_num(mean_per_time_band, nan=0, posinf=0, neginf=0) assert not (np.isnan(mean_per_time_band).any() | np.isinf(mean_per_time_band).any()) if is_nan_inf.any(): if has_time: means_to_fill = ( repeat( np.nanmean(mean_per_time_band, axis=0), "b -> h w t b", h=data.shape[0], w=data.shape[1], t=data.shape[2], ) * is_nan_inf ) else: means_to_fill = ( repeat(mean_per_time_band, "b -> h w b", h=data.shape[0], w=data.shape[1]) * is_nan_inf ) data = np.nan_to_num(data, nan=0, posinf=0, neginf=0) + means_to_fill return data def tif_to_h5py_path(self, tif_path: Path) -> Path: assert self.h5py_folder is not None tif_name = tif_path.stem return self.h5py_folder / f"{tif_name}.h5" @staticmethod def start_month_from_file(tif_path: Path) -> int: start_date = tif_path.name.partition("dates=")[2][:10] start_month = int(start_date.split("-")[1]) return start_month @classmethod def month_array_from_file(cls, tif_path: Path, num_timesteps: int) -> np.ndarray: """ Given a filepath and num_timesteps, extract start_month and return an array of months where months[idx] is the month for list(range(num_timesteps))[i] """ # assumes all files are exported with filenames including: # *dates=*, where the start_date is in a YYYY-MM-dd format start_month = cls.start_month_from_file(tif_path) # >>> np.fmod(np.array([9., 10, 11, 12, 13, 14]), 12) # array([ 9., 10., 11., 0., 1., 2.]) # - 1 because we want to index from 0 return np.fmod(np.arange(start_month - 1, start_month - 1 + num_timesteps), 12) @classmethod def _tif_to_array(cls, tif_path: Path) -> DatasetOutput: with cast(xr.Dataset, rioxarray.open_rasterio(tif_path)) as data: # [all_combined_bands, H, W] # all_combined_bands includes all dynamic-in-time bands # interleaved for all timesteps # followed by the static-in-time bands values = cast(np.ndarray, data.values) lon = np.mean(cast(np.ndarray, data.x)).item() lat = np.mean(cast(np.ndarray, data.y)).item() # this is a bit hackey but is a unique edge case for locations, # which are not part of the exported bands but are instead # computed here static_bands_in_tif = len(EO_STATIC_BANDS) - len(LOCATION_BANDS) num_timesteps = (values.shape[0] - len(SPACE_BANDS) - static_bands_in_tif) / len( ALL_DYNAMIC_IN_TIME_BANDS ) assert num_timesteps % 1 == 0, f"{tif_path} has incorrect number of channels" dynamic_in_time_x = rearrange( values[: -(len(SPACE_BANDS) + static_bands_in_tif)], "(t c) h w -> h w t c", c=len(ALL_DYNAMIC_IN_TIME_BANDS), t=int(num_timesteps), ) dynamic_in_time_x = cls._fillna(dynamic_in_time_x, EO_DYNAMIC_IN_TIME_BANDS_NP) space_time_x = dynamic_in_time_x[:, :, :, : -len(TIME_BANDS)] # calculate indices, which have shape [h, w, t, 1] ndvi = cls.calculate_ndi(space_time_x, band_1="B8", band_2="B4") space_time_x = np.concatenate((space_time_x, ndvi), axis=-1) time_x = dynamic_in_time_x[:, :, :, -len(TIME_BANDS) :] time_x = np.nanmean(time_x, axis=(0, 1)) space_x = rearrange( values[-(len(SPACE_BANDS) + static_bands_in_tif) : -static_bands_in_tif], "c h w -> h w c", ) space_x = cls._fillna(space_x, np.array(SPACE_BANDS)) static_x = values[-static_bands_in_tif:] # add DW_STATIC and WC_STATIC dw_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in DW_BANDS]] wc_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in WC_BANDS]] static_x = np.concatenate( [ np.nanmean(static_x, axis=(1, 2)), to_cartesian(lat, lon), np.nanmean(dw_bands, axis=(0, 1)), np.nanmean(wc_bands, axis=(0, 1)), ] ) static_x = cls._fillna(static_x, np.array(STATIC_BANDS)) months = cls.month_array_from_file(tif_path, int(num_timesteps)) try: assert not np.isnan(space_time_x).any(), f"NaNs in s_t_x for {tif_path}" assert not np.isnan(space_x).any(), f"NaNs in sp_x for {tif_path}" assert not np.isnan(time_x).any(), f"NaNs in t_x for {tif_path}" assert not np.isnan(static_x).any(), f"NaNs in st_x for {tif_path}" assert not np.isinf(space_time_x).any(), f"Infs in s_t_x for {tif_path}" assert not np.isinf(space_x).any(), f"Infs in sp_x for {tif_path}" assert not np.isinf(time_x).any(), f"Infs in t_x for {tif_path}" assert not np.isinf(static_x).any(), f"Infs in st_x for {tif_path}" return DatasetOutput( space_time_x.astype(np.half), space_x.astype(np.half), time_x.astype(np.half), static_x.astype(np.half), months, ) except AssertionError as e: raise e def _tif_to_array_with_checks(self, idx): tif_path = self.tifs[idx] try: output = self._tif_to_array(tif_path) return output except Exception as e: print(f"Replacing tif {tif_path} due to {e}") if idx == 0: new_idx = idx + 1 else: new_idx = idx - 1 self.tifs[idx] = self.tifs[new_idx] tif_path = self.tifs[idx] output = self._tif_to_array(tif_path) return output def load_tif(self, idx: int) -> DatasetOutput: if self.h5py_folder is None: s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx) return DatasetOutput( *self.subset_image( s_t_x, sp_x, t_x, st_x, months, size=self.output_hw, num_timesteps=self.output_timesteps, ) ) else: h5py_path = self.tif_to_h5py_path(self.tifs[idx]) if h5py_path.exists(): try: return self.read_and_slice_h5py_file(h5py_path) except Exception as e: logger.warn(f"Exception {e} for {self.tifs[idx]}") h5py_path.unlink() s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx) self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem) return DatasetOutput( *self.subset_image( s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps ) ) else: s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx) self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem) return DatasetOutput( *self.subset_image( s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps ) ) def save_h5py(self, s_t_x, sp_x, t_x, st_x, tif_stem): assert self.h5py_folder is not None with h5py.File(self.h5py_folder / f"{tif_stem}.h5", "w") as hf: hf.create_dataset("s_t_x", data=s_t_x) hf.create_dataset("sp_x", data=sp_x) hf.create_dataset("t_x", data=t_x) hf.create_dataset("st_x", data=st_x) @staticmethod def calculate_ndi(input_array: np.ndarray, band_1: str, band_2: str) -> np.ndarray: r""" Given an input array of shape [h, w, t, bands] where bands == len(EO_DYNAMIC_IN_TIME_BANDS_NP), returns an array of shape [h, w, t, 1] representing NDI, (band_1 - band_2) / (band_1 + band_2) """ band_1_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_1)] band_2_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_2)] with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="invalid value encountered in divide") # suppress the following warning # RuntimeWarning: invalid value encountered in divide # for cases where near_infrared + red == 0 # since this is handled in the where condition return np.expand_dims( np.where( (band_1_np + band_2_np) > 0, (band_1_np - band_2_np) / (band_1_np + band_2_np), 0, ), -1, ) def read_and_slice_h5py_file(self, h5py_path: Path): with h5py.File(h5py_path, "r") as hf: h, w, t, _ = hf["s_t_x"].shape start_h, start_w, start_t = self.return_subset_indices( h, w, t, self.output_hw, self.output_timesteps ) months = self.month_array_from_file(h5py_path, t) output = DatasetOutput( hf["s_t_x"][ start_h : start_h + self.output_hw, start_w : start_w + self.output_hw, start_t : start_t + self.output_timesteps, ], hf["sp_x"][ start_h : start_h + self.output_hw, start_w : start_w + self.output_hw, ], hf["t_x"][start_t : start_t + self.output_timesteps], hf["st_x"][:], months[start_t : start_t + self.output_timesteps], ) return output def __getitem__(self, idx): if self.h5pys_only: return self.read_and_slice_h5py_file(self.h5pys[idx]).normalize(self.normalizer) else: return self.load_tif(idx).normalize(self.normalizer) def process_h5pys(self): # iterate through the dataset and save it all as h5pys assert self.h5py_folder is not None assert not self.h5pys_only assert self.cache for i in tqdm(range(len(self))): # loading the tifs also saves them # if they don't exist _ = self[i] @staticmethod def load_normalization_values(path: Path): if not path.exists(): raise ValueError(f"No file found at path {path}") with path.open("r") as f: norm_dict = json.load(f) # we computed the normalizing dict using the same datset output_dict = {} for key, val in norm_dict.items(): if "n" not in key: output_dict[int(key)] = val else: output_dict[key] = val return output_dict def compute_normalization_values( self, output_hw: int = 96, output_timesteps: int = 24, estimate_from: Optional[int] = 10000, ): org_hw = self.output_hw self.output_hw = output_hw org_t = self.output_timesteps self.output_timesteps = output_timesteps if estimate_from is not None: indices_to_sample = sample(list(range(len(self))), k=estimate_from) else: indices_to_sample = list(range(len(self))) output = ListOfDatasetOutputs([], [], [], [], []) for i in tqdm(indices_to_sample): s_t_x, sp_x, t_x, st_x, months = self[i] output.space_time_x.append(s_t_x.astype(np.float64)) output.space_x.append(sp_x.astype(np.float64)) output.time_x.append(t_x.astype(np.float64)) output.static_x.append(st_x.astype(np.float64)) output.months.append(months) d_o = output.to_datasetoutput() norm_dict = { "total_n": len(self), "sampled_n": len(indices_to_sample), len(SPACE_TIME_BANDS): { "mean": d_o.space_time_x.mean(axis=(0, 1, 2, 3)).tolist(), "std": d_o.space_time_x.std(axis=(0, 1, 2, 3)).tolist(), }, len(SPACE_BANDS): { "mean": d_o.space_x.mean(axis=(0, 1, 2)).tolist(), "std": d_o.space_x.std(axis=(0, 1, 2)).tolist(), }, len(TIME_BANDS): { "mean": d_o.time_x.mean(axis=(0, 1)).tolist(), "std": d_o.time_x.std(axis=(0, 1)).tolist(), }, len(STATIC_BANDS): { "mean": d_o.static_x.mean(axis=0).tolist(), "std": d_o.static_x.std(axis=0).tolist(), }, } self.output_hw = org_hw self.output_timesteps = org_t return norm_dict