Spaces:
Sleeping
Sleeping
File size: 31,122 Bytes
b20c769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
import json
import logging
import math
import os
import warnings
from collections import OrderedDict
from copy import deepcopy
from pathlib import Path
from random import sample
from typing import Dict, Iterator, List, NamedTuple, Optional, Sequence, Tuple, Union, cast
from typing import OrderedDict as OrderedDictType
import h5py
import numpy as np
import rioxarray
import torch
import xarray as xr
from einops import rearrange, repeat
from torch.utils.data import Dataset as PyTorchDataset
from tqdm import tqdm
from .config import (
DATASET_OUTPUT_HW,
EE_BUCKET_TIFS,
EE_FOLDER_H5PYS,
EE_FOLDER_TIFS,
NUM_TIMESTEPS,
)
from .earthengine.eo import (
ALL_DYNAMIC_IN_TIME_BANDS,
DW_BANDS,
DW_DIV_VALUES,
DW_SHIFT_VALUES,
ERA5_BANDS,
LANDSCAN_BANDS,
LOCATION_BANDS,
S1_BANDS,
SPACE_BANDS,
SPACE_DIV_VALUES,
SPACE_SHIFT_VALUES,
SRTM_BANDS,
TC_BANDS,
TIME_BANDS,
TIME_DIV_VALUES,
TIME_SHIFT_VALUES,
VIIRS_BANDS,
WC_BANDS,
WC_DIV_VALUES,
WC_SHIFT_VALUES,
)
from .earthengine.eo import SPACE_TIME_BANDS as EO_SPACE_TIME_BANDS
from .earthengine.eo import SPACE_TIME_DIV_VALUES as EO_SPACE_TIME_DIV_VALUES
from .earthengine.eo import SPACE_TIME_SHIFT_VALUES as EO_SPACE_TIME_SHIFT_VALUES
from .earthengine.eo import STATIC_BANDS as EO_STATIC_BANDS
from .earthengine.eo import STATIC_DIV_VALUES as EO_STATIC_DIV_VALUES
from .earthengine.eo import STATIC_SHIFT_VALUES as EO_STATIC_SHIFT_VALUES
logger = logging.getLogger("__main__")
EO_DYNAMIC_IN_TIME_BANDS_NP = np.array(EO_SPACE_TIME_BANDS + TIME_BANDS)
SPACE_TIME_BANDS = EO_SPACE_TIME_BANDS + ["NDVI"]
SPACE_TIME_SHIFT_VALUES = np.append(EO_SPACE_TIME_SHIFT_VALUES, [0])
SPACE_TIME_DIV_VALUES = np.append(EO_SPACE_TIME_DIV_VALUES, [1])
SPACE_TIME_BANDS_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"S1": [SPACE_TIME_BANDS.index(b) for b in S1_BANDS],
"S2_RGB": [SPACE_TIME_BANDS.index(b) for b in ["B2", "B3", "B4"]],
"S2_Red_Edge": [SPACE_TIME_BANDS.index(b) for b in ["B5", "B6", "B7"]],
"S2_NIR_10m": [SPACE_TIME_BANDS.index(b) for b in ["B8"]],
"S2_NIR_20m": [SPACE_TIME_BANDS.index(b) for b in ["B8A"]],
"S2_SWIR": [SPACE_TIME_BANDS.index(b) for b in ["B11", "B12"]],
"NDVI": [SPACE_TIME_BANDS.index("NDVI")],
}
)
TIME_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"ERA5": [TIME_BANDS.index(b) for b in ERA5_BANDS],
"TC": [TIME_BANDS.index(b) for b in TC_BANDS],
"VIIRS": [TIME_BANDS.index(b) for b in VIIRS_BANDS],
}
)
SPACE_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"SRTM": [SPACE_BANDS.index(b) for b in SRTM_BANDS],
"DW": [SPACE_BANDS.index(b) for b in DW_BANDS],
"WC": [SPACE_BANDS.index(b) for b in WC_BANDS],
}
)
STATIC_DW_BANDS = [f"{x}_static" for x in DW_BANDS]
STATIC_WC_BANDS = [f"{x}_static" for x in WC_BANDS]
STATIC_BANDS = EO_STATIC_BANDS + STATIC_DW_BANDS + STATIC_WC_BANDS
STATIC_DIV_VALUES = np.append(EO_STATIC_DIV_VALUES, (DW_DIV_VALUES + WC_DIV_VALUES))
STATIC_SHIFT_VALUES = np.append(EO_STATIC_SHIFT_VALUES, (DW_SHIFT_VALUES + WC_SHIFT_VALUES))
STATIC_BAND_GROUPS_IDX: OrderedDictType[str, List[int]] = OrderedDict(
{
"LS": [STATIC_BANDS.index(b) for b in LANDSCAN_BANDS],
"location": [STATIC_BANDS.index(b) for b in LOCATION_BANDS],
"DW_static": [STATIC_BANDS.index(b) for b in STATIC_DW_BANDS],
"WC_static": [STATIC_BANDS.index(b) for b in STATIC_WC_BANDS],
}
)
# if this changes the normalizer will need to index against something else
assert len(SPACE_TIME_BANDS) != len(SPACE_BANDS) != len(TIME_BANDS) != len(STATIC_BANDS)
class Normalizer:
# these are the bands we will replace with the 2*std computation
# if std = True
std_bands: Dict[int, list] = {
len(SPACE_TIME_BANDS): [b for b in SPACE_TIME_BANDS if b != "NDVI"],
len(SPACE_BANDS): SRTM_BANDS,
len(TIME_BANDS): TIME_BANDS,
len(STATIC_BANDS): LANDSCAN_BANDS,
}
def __init__(
self, std: bool = True, normalizing_dicts: Optional[Dict] = None, std_multiplier: float = 2
):
self.shift_div_dict = {
len(SPACE_TIME_BANDS): {
"shift": deepcopy(SPACE_TIME_SHIFT_VALUES),
"div": deepcopy(SPACE_TIME_DIV_VALUES),
},
len(SPACE_BANDS): {
"shift": deepcopy(SPACE_SHIFT_VALUES),
"div": deepcopy(SPACE_DIV_VALUES),
},
len(TIME_BANDS): {
"shift": deepcopy(TIME_SHIFT_VALUES),
"div": deepcopy(TIME_DIV_VALUES),
},
len(STATIC_BANDS): {
"shift": deepcopy(STATIC_SHIFT_VALUES),
"div": deepcopy(STATIC_DIV_VALUES),
},
}
print(self.shift_div_dict.keys())
self.normalizing_dicts = normalizing_dicts
if std:
name_to_bands = {
len(SPACE_TIME_BANDS): SPACE_TIME_BANDS,
len(SPACE_BANDS): SPACE_BANDS,
len(TIME_BANDS): TIME_BANDS,
len(STATIC_BANDS): STATIC_BANDS,
}
assert normalizing_dicts is not None
for key, val in normalizing_dicts.items():
if isinstance(key, str):
continue
bands_to_replace = self.std_bands[key]
for band in bands_to_replace:
band_idx = name_to_bands[key].index(band)
mean = val["mean"][band_idx]
std = val["std"][band_idx]
min_value = mean - (std_multiplier * std)
max_value = mean + (std_multiplier * std)
div = max_value - min_value
if div == 0:
raise ValueError(f"{band} has div value of 0")
self.shift_div_dict[key]["shift"][band_idx] = min_value
self.shift_div_dict[key]["div"][band_idx] = div
@staticmethod
def _normalize(x: np.ndarray, shift_values: np.ndarray, div_values: np.ndarray) -> np.ndarray:
x = (x - shift_values) / div_values
return x
def __call__(self, x: np.ndarray):
div_values = self.shift_div_dict[x.shape[-1]]["div"]
return self._normalize(x, self.shift_div_dict[x.shape[-1]]["shift"], div_values)
class DatasetOutput(NamedTuple):
space_time_x: np.ndarray
space_x: np.ndarray
time_x: np.ndarray
static_x: np.ndarray
months: np.ndarray
@classmethod
def concatenate(cls, datasetoutputs: Sequence["DatasetOutput"]) -> "DatasetOutput":
s_t_x = np.stack([o.space_time_x for o in datasetoutputs], axis=0)
sp_x = np.stack([o.space_x for o in datasetoutputs], axis=0)
t_x = np.stack([o.time_x for o in datasetoutputs], axis=0)
st_x = np.stack([o.static_x for o in datasetoutputs], axis=0)
months = np.stack([o.months for o in datasetoutputs], axis=0)
return cls(s_t_x, sp_x, t_x, st_x, months)
def normalize(self, normalizer: Optional[Normalizer]) -> "DatasetOutput":
if normalizer is None:
return self
return DatasetOutput(
normalizer(self.space_time_x).astype(np.half),
normalizer(self.space_x).astype(np.half),
normalizer(self.time_x).astype(np.half),
normalizer(self.static_x).astype(np.half),
self.months,
)
def in_pixel_batches(self, batch_size: int, window_size: int) -> Iterator["DatasetOutput"]:
if self.space_time_x.shape[0] % window_size != 0:
raise ValueError("DatasetOutput height must be divisible by the patch size")
if self.space_time_x.shape[1] % window_size != 0:
raise ValueError("DatasetOutput width must be divisible by the patch size")
# how many batches from the height dimension, how many from the width dimension?
h_b = self.space_time_x.shape[0] // window_size
w_b = self.space_time_x.shape[1] // window_size
flat_s_t_x = rearrange(
self.space_time_x,
"(h_b h) (w_b w) t d -> (h_b w_b) h w t d",
h=window_size,
w=window_size,
h_b=h_b,
w_b=w_b,
)
flat_sp_x = rearrange(
self.space_x,
"(h_b h) (w_b w) d -> (h_b w_b) h w d",
h=window_size,
w=window_size,
h_b=h_b,
w_b=w_b,
)
# static in space modalities will just get repeated per batch
cur_idx = 0
while cur_idx < flat_s_t_x.shape[0]:
cur_idx_s_t_x = flat_s_t_x[cur_idx : cur_idx + batch_size].copy()
b = cur_idx_s_t_x.shape[0]
yield DatasetOutput(
space_time_x=cur_idx_s_t_x,
space_x=flat_sp_x[cur_idx : cur_idx + batch_size].copy(),
time_x=repeat(self.time_x, "t d -> b t d", b=b),
static_x=repeat(self.static_x, "d -> b d", b=b),
months=repeat(self.months, "t -> b t", b=b),
)
cur_idx += batch_size
class ListOfDatasetOutputs(NamedTuple):
space_time_x: List[np.ndarray]
space_x: List[np.ndarray]
time_x: List[np.ndarray]
static_x: List[np.ndarray]
months: List[np.ndarray]
def to_datasetoutput(self) -> DatasetOutput:
return DatasetOutput(
np.stack(self.space_time_x, axis=0),
np.stack(self.space_x, axis=0),
np.stack(self.time_x, axis=0),
np.stack(self.static_x, axis=0),
np.stack(self.months, axis=0),
)
def to_cartesian(
lat: Union[float, np.ndarray, torch.Tensor], lon: Union[float, np.ndarray, torch.Tensor]
) -> Union[np.ndarray, torch.Tensor]:
if isinstance(lat, float):
assert -90 <= lat <= 90, f"lat out of range ({lat}). Make sure you are in EPSG:4326"
assert -180 <= lon <= 180, f"lon out of range ({lon}). Make sure you are in EPSG:4326"
assert isinstance(lon, float), f"Expected float got {type(lon)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x = math.cos(lat) * math.cos(lon)
y = math.cos(lat) * math.sin(lon)
z = math.sin(lat)
return np.array([x, y, z])
elif isinstance(lon, np.ndarray):
assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326"
assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326"
assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326"
assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326"
assert isinstance(lat, np.ndarray), f"Expected np.ndarray got {type(lat)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x_np = np.cos(lat) * np.cos(lon)
y_np = np.cos(lat) * np.sin(lon)
z_np = np.sin(lat)
return np.stack([x_np, y_np, z_np], axis=-1)
elif isinstance(lon, torch.Tensor):
assert -90 <= lat.min(), f"lat out of range ({lat.min()}). Make sure you are in EPSG:4326"
assert 90 >= lat.max(), f"lat out of range ({lat.max()}). Make sure you are in EPSG:4326"
assert -180 <= lon.min(), f"lon out of range ({lon.min()}). Make sure you are in EPSG:4326"
assert 180 >= lon.max(), f"lon out of range ({lon.max()}). Make sure you are in EPSG:4326"
assert isinstance(lat, torch.Tensor), f"Expected torch.Tensor got {type(lat)}"
# transform to radians
lat = lat * math.pi / 180
lon = lon * math.pi / 180
x_t = torch.cos(lat) * torch.cos(lon)
y_t = torch.cos(lat) * torch.sin(lon)
z_t = torch.sin(lat)
return torch.stack([x_t, y_t, z_t], dim=-1)
else:
raise AssertionError(f"Unexpected input type {type(lon)}")
class Dataset(PyTorchDataset):
def __init__(
self,
data_folder: Path,
download: bool = True,
h5py_folder: Optional[Path] = None,
h5pys_only: bool = False,
output_hw: int = DATASET_OUTPUT_HW,
output_timesteps: int = NUM_TIMESTEPS,
normalizer: Optional[Normalizer] = None,
):
self.data_folder = data_folder
self.h5pys_only = h5pys_only
self.h5py_folder = h5py_folder
self.cache = False
self.normalizer = normalizer
if h5py_folder is not None:
self.cache = True
if h5pys_only:
assert h5py_folder is not None, "Can't use h5pys only if there is no cache folder"
self.tifs: List[Path] = []
if download:
self.download_h5pys(h5py_folder)
self.h5pys = list(h5py_folder.glob("*.h5"))
else:
if download:
self.download_tifs(data_folder)
self.tifs = []
tifs = list(data_folder.glob("*.tif")) + list(data_folder.glob("*.tiff"))
for tif in tifs:
try:
_ = self.start_month_from_file(tif)
self.tifs.append(tif)
except IndexError:
warnings.warn(f"IndexError for {tif}")
self.h5pys = []
self.output_hw = output_hw
self.output_timesteps = output_timesteps
def __len__(self) -> int:
if self.h5pys_only:
return len(self.h5pys)
return len(self.tifs)
@staticmethod
def download_tifs(data_folder):
# Download files (faster than using Python API)
os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_TIFS} {data_folder}")
@staticmethod
def download_h5pys(data_folder):
# Download files (faster than using Python API)
os.system(f"gcloud storage rsync -r gs://{EE_BUCKET_TIFS}/{EE_FOLDER_H5PYS} {data_folder}")
@staticmethod
def return_subset_indices(
total_h,
total_w,
total_t,
size: int,
num_timesteps: int,
) -> Tuple[int, int, int]:
"""
space_time_x: array of shape [H, W, T, D]
space_x: array of shape [H, W, D]
time_x: array of shape [T, D]
static_x: array of shape [D]
size must be greater or equal to H & W
"""
possible_h = total_h - size
possible_w = total_w - size
assert (possible_h >= 0) & (possible_w >= 0)
possible_t = total_t - num_timesteps
assert possible_t >= 0
if possible_h > 0:
start_h = np.random.choice(possible_h)
else:
start_h = possible_h
if possible_w > 0:
start_w = np.random.choice(possible_w)
else:
start_w = possible_w
if possible_t > 0:
start_t = np.random.choice(possible_t)
else:
start_t = possible_t
return start_h, start_w, start_t
@staticmethod
def subset_image(
space_time_x: np.ndarray,
space_x: np.ndarray,
time_x: np.ndarray,
static_x: np.ndarray,
months: np.ndarray,
size: int,
num_timesteps: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
space_time_x: array of shape [H, W, T, D]
space_x: array of shape [H, W, D]
time_x: array of shape [T, D]
static_x: array of shape [D]
size must be greater or equal to H & W
"""
assert (space_time_x.shape[0] == space_x.shape[0]) & (
space_time_x.shape[1] == space_x.shape[1]
)
assert space_time_x.shape[2] == time_x.shape[0]
possible_h = space_time_x.shape[0] - size
possible_w = space_time_x.shape[1] - size
assert (possible_h >= 0) & (possible_w >= 0)
possible_t = space_time_x.shape[2] - num_timesteps
assert possible_t >= 0
if possible_h > 0:
start_h = np.random.choice(possible_h)
else:
start_h = possible_h
if possible_w > 0:
start_w = np.random.choice(possible_w)
else:
start_w = possible_w
if possible_t > 0:
start_t = np.random.choice(possible_t)
else:
start_t = possible_t
return (
space_time_x[
start_h : start_h + size,
start_w : start_w + size,
start_t : start_t + num_timesteps,
],
space_x[start_h : start_h + size, start_w : start_w + size],
time_x[start_t : start_t + num_timesteps],
static_x,
months[start_t : start_t + num_timesteps],
)
@staticmethod
def _fillna(data: np.ndarray, bands_np: np.ndarray):
"""Fill in the missing values in the data array"""
if data.shape[-1] != len(bands_np):
raise ValueError(f"Expected data to have {len(bands_np)} bands - got {data.shape[-1]}")
is_nan_inf = np.isnan(data) | np.isinf(data)
if not is_nan_inf.any():
return data
if len(data.shape) <= 2:
return np.nan_to_num(data, nan=0)
if len(data.shape) == 3:
has_time = False
elif len(data.shape) == 4:
has_time = True
else:
raise ValueError(
f"Expected data to be 3D or 4D (x, y, (time), band) - got {data.shape}"
)
# treat infinities as NaNs
data = np.nan_to_num(data, nan=np.nan, posinf=np.nan, neginf=np.nan)
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
mean_per_time_band = np.nanmean(data, axis=(0, 1)) # t, b or b
mean_per_time_band = np.nan_to_num(mean_per_time_band, nan=0, posinf=0, neginf=0)
assert not (np.isnan(mean_per_time_band).any() | np.isinf(mean_per_time_band).any())
if is_nan_inf.any():
if has_time:
means_to_fill = (
repeat(
np.nanmean(mean_per_time_band, axis=0),
"b -> h w t b",
h=data.shape[0],
w=data.shape[1],
t=data.shape[2],
)
* is_nan_inf
)
else:
means_to_fill = (
repeat(mean_per_time_band, "b -> h w b", h=data.shape[0], w=data.shape[1])
* is_nan_inf
)
data = np.nan_to_num(data, nan=0, posinf=0, neginf=0) + means_to_fill
return data
def tif_to_h5py_path(self, tif_path: Path) -> Path:
assert self.h5py_folder is not None
tif_name = tif_path.stem
return self.h5py_folder / f"{tif_name}.h5"
@staticmethod
def start_month_from_file(tif_path: Path) -> int:
start_date = tif_path.name.partition("dates=")[2][:10]
start_month = int(start_date.split("-")[1])
return start_month
@classmethod
def month_array_from_file(cls, tif_path: Path, num_timesteps: int) -> np.ndarray:
"""
Given a filepath and num_timesteps, extract start_month and return an array of
months where months[idx] is the month for list(range(num_timesteps))[i]
"""
# assumes all files are exported with filenames including:
# *dates=<start_date>*, where the start_date is in a YYYY-MM-dd format
start_month = cls.start_month_from_file(tif_path)
# >>> np.fmod(np.array([9., 10, 11, 12, 13, 14]), 12)
# array([ 9., 10., 11., 0., 1., 2.])
# - 1 because we want to index from 0
return np.fmod(np.arange(start_month - 1, start_month - 1 + num_timesteps), 12)
@classmethod
def _tif_to_array(cls, tif_path: Path) -> DatasetOutput:
with cast(xr.Dataset, rioxarray.open_rasterio(tif_path)) as data:
# [all_combined_bands, H, W]
# all_combined_bands includes all dynamic-in-time bands
# interleaved for all timesteps
# followed by the static-in-time bands
values = cast(np.ndarray, data.values)
lon = np.mean(cast(np.ndarray, data.x)).item()
lat = np.mean(cast(np.ndarray, data.y)).item()
# this is a bit hackey but is a unique edge case for locations,
# which are not part of the exported bands but are instead
# computed here
static_bands_in_tif = len(EO_STATIC_BANDS) - len(LOCATION_BANDS)
num_timesteps = (values.shape[0] - len(SPACE_BANDS) - static_bands_in_tif) / len(
ALL_DYNAMIC_IN_TIME_BANDS
)
assert num_timesteps % 1 == 0, f"{tif_path} has incorrect number of channels"
dynamic_in_time_x = rearrange(
values[: -(len(SPACE_BANDS) + static_bands_in_tif)],
"(t c) h w -> h w t c",
c=len(ALL_DYNAMIC_IN_TIME_BANDS),
t=int(num_timesteps),
)
dynamic_in_time_x = cls._fillna(dynamic_in_time_x, EO_DYNAMIC_IN_TIME_BANDS_NP)
space_time_x = dynamic_in_time_x[:, :, :, : -len(TIME_BANDS)]
# calculate indices, which have shape [h, w, t, 1]
ndvi = cls.calculate_ndi(space_time_x, band_1="B8", band_2="B4")
space_time_x = np.concatenate((space_time_x, ndvi), axis=-1)
time_x = dynamic_in_time_x[:, :, :, -len(TIME_BANDS) :]
time_x = np.nanmean(time_x, axis=(0, 1))
space_x = rearrange(
values[-(len(SPACE_BANDS) + static_bands_in_tif) : -static_bands_in_tif],
"c h w -> h w c",
)
space_x = cls._fillna(space_x, np.array(SPACE_BANDS))
static_x = values[-static_bands_in_tif:]
# add DW_STATIC and WC_STATIC
dw_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in DW_BANDS]]
wc_bands = space_x[:, :, [i for i, v in enumerate(SPACE_BANDS) if v in WC_BANDS]]
static_x = np.concatenate(
[
np.nanmean(static_x, axis=(1, 2)),
to_cartesian(lat, lon),
np.nanmean(dw_bands, axis=(0, 1)),
np.nanmean(wc_bands, axis=(0, 1)),
]
)
static_x = cls._fillna(static_x, np.array(STATIC_BANDS))
months = cls.month_array_from_file(tif_path, int(num_timesteps))
try:
assert not np.isnan(space_time_x).any(), f"NaNs in s_t_x for {tif_path}"
assert not np.isnan(space_x).any(), f"NaNs in sp_x for {tif_path}"
assert not np.isnan(time_x).any(), f"NaNs in t_x for {tif_path}"
assert not np.isnan(static_x).any(), f"NaNs in st_x for {tif_path}"
assert not np.isinf(space_time_x).any(), f"Infs in s_t_x for {tif_path}"
assert not np.isinf(space_x).any(), f"Infs in sp_x for {tif_path}"
assert not np.isinf(time_x).any(), f"Infs in t_x for {tif_path}"
assert not np.isinf(static_x).any(), f"Infs in st_x for {tif_path}"
return DatasetOutput(
space_time_x.astype(np.half),
space_x.astype(np.half),
time_x.astype(np.half),
static_x.astype(np.half),
months,
)
except AssertionError as e:
raise e
def _tif_to_array_with_checks(self, idx):
tif_path = self.tifs[idx]
try:
output = self._tif_to_array(tif_path)
return output
except Exception as e:
print(f"Replacing tif {tif_path} due to {e}")
if idx == 0:
new_idx = idx + 1
else:
new_idx = idx - 1
self.tifs[idx] = self.tifs[new_idx]
tif_path = self.tifs[idx]
output = self._tif_to_array(tif_path)
return output
def load_tif(self, idx: int) -> DatasetOutput:
if self.h5py_folder is None:
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
return DatasetOutput(
*self.subset_image(
s_t_x,
sp_x,
t_x,
st_x,
months,
size=self.output_hw,
num_timesteps=self.output_timesteps,
)
)
else:
h5py_path = self.tif_to_h5py_path(self.tifs[idx])
if h5py_path.exists():
try:
return self.read_and_slice_h5py_file(h5py_path)
except Exception as e:
logger.warn(f"Exception {e} for {self.tifs[idx]}")
h5py_path.unlink()
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem)
return DatasetOutput(
*self.subset_image(
s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps
)
)
else:
s_t_x, sp_x, t_x, st_x, months = self._tif_to_array_with_checks(idx)
self.save_h5py(s_t_x, sp_x, t_x, st_x, self.tifs[idx].stem)
return DatasetOutput(
*self.subset_image(
s_t_x, sp_x, t_x, st_x, months, self.output_hw, self.output_timesteps
)
)
def save_h5py(self, s_t_x, sp_x, t_x, st_x, tif_stem):
assert self.h5py_folder is not None
with h5py.File(self.h5py_folder / f"{tif_stem}.h5", "w") as hf:
hf.create_dataset("s_t_x", data=s_t_x)
hf.create_dataset("sp_x", data=sp_x)
hf.create_dataset("t_x", data=t_x)
hf.create_dataset("st_x", data=st_x)
@staticmethod
def calculate_ndi(input_array: np.ndarray, band_1: str, band_2: str) -> np.ndarray:
r"""
Given an input array of shape [h, w, t, bands]
where bands == len(EO_DYNAMIC_IN_TIME_BANDS_NP), returns an array of shape
[h, w, t, 1] representing NDI,
(band_1 - band_2) / (band_1 + band_2)
"""
band_1_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_1)]
band_2_np = input_array[:, :, :, EO_SPACE_TIME_BANDS.index(band_2)]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="invalid value encountered in divide")
# suppress the following warning
# RuntimeWarning: invalid value encountered in divide
# for cases where near_infrared + red == 0
# since this is handled in the where condition
return np.expand_dims(
np.where(
(band_1_np + band_2_np) > 0,
(band_1_np - band_2_np) / (band_1_np + band_2_np),
0,
),
-1,
)
def read_and_slice_h5py_file(self, h5py_path: Path):
with h5py.File(h5py_path, "r") as hf:
h, w, t, _ = hf["s_t_x"].shape
start_h, start_w, start_t = self.return_subset_indices(
h, w, t, self.output_hw, self.output_timesteps
)
months = self.month_array_from_file(h5py_path, t)
output = DatasetOutput(
hf["s_t_x"][
start_h : start_h + self.output_hw,
start_w : start_w + self.output_hw,
start_t : start_t + self.output_timesteps,
],
hf["sp_x"][
start_h : start_h + self.output_hw,
start_w : start_w + self.output_hw,
],
hf["t_x"][start_t : start_t + self.output_timesteps],
hf["st_x"][:],
months[start_t : start_t + self.output_timesteps],
)
return output
def __getitem__(self, idx):
if self.h5pys_only:
return self.read_and_slice_h5py_file(self.h5pys[idx]).normalize(self.normalizer)
else:
return self.load_tif(idx).normalize(self.normalizer)
def process_h5pys(self):
# iterate through the dataset and save it all as h5pys
assert self.h5py_folder is not None
assert not self.h5pys_only
assert self.cache
for i in tqdm(range(len(self))):
# loading the tifs also saves them
# if they don't exist
_ = self[i]
@staticmethod
def load_normalization_values(path: Path):
if not path.exists():
raise ValueError(f"No file found at path {path}")
with path.open("r") as f:
norm_dict = json.load(f)
# we computed the normalizing dict using the same datset
output_dict = {}
for key, val in norm_dict.items():
if "n" not in key:
output_dict[int(key)] = val
else:
output_dict[key] = val
return output_dict
def compute_normalization_values(
self,
output_hw: int = 96,
output_timesteps: int = 24,
estimate_from: Optional[int] = 10000,
):
org_hw = self.output_hw
self.output_hw = output_hw
org_t = self.output_timesteps
self.output_timesteps = output_timesteps
if estimate_from is not None:
indices_to_sample = sample(list(range(len(self))), k=estimate_from)
else:
indices_to_sample = list(range(len(self)))
output = ListOfDatasetOutputs([], [], [], [], [])
for i in tqdm(indices_to_sample):
s_t_x, sp_x, t_x, st_x, months = self[i]
output.space_time_x.append(s_t_x.astype(np.float64))
output.space_x.append(sp_x.astype(np.float64))
output.time_x.append(t_x.astype(np.float64))
output.static_x.append(st_x.astype(np.float64))
output.months.append(months)
d_o = output.to_datasetoutput()
norm_dict = {
"total_n": len(self),
"sampled_n": len(indices_to_sample),
len(SPACE_TIME_BANDS): {
"mean": d_o.space_time_x.mean(axis=(0, 1, 2, 3)).tolist(),
"std": d_o.space_time_x.std(axis=(0, 1, 2, 3)).tolist(),
},
len(SPACE_BANDS): {
"mean": d_o.space_x.mean(axis=(0, 1, 2)).tolist(),
"std": d_o.space_x.std(axis=(0, 1, 2)).tolist(),
},
len(TIME_BANDS): {
"mean": d_o.time_x.mean(axis=(0, 1)).tolist(),
"std": d_o.time_x.std(axis=(0, 1)).tolist(),
},
len(STATIC_BANDS): {
"mean": d_o.static_x.mean(axis=0).tolist(),
"std": d_o.static_x.std(axis=0).tolist(),
},
}
self.output_hw = org_hw
self.output_timesteps = org_t
return norm_dict
|