Spaces:
Runtime error
Runtime error
"""Quantum-inspired reasoning implementations.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class QuantumState: | |
"""Quantum state with superposition and entanglement.""" | |
name: str | |
amplitude: complex | |
phase: float | |
entangled_states: List[str] = field(default_factory=list) | |
class QuantumReasoning(ReasoningStrategy): | |
""" | |
Advanced quantum reasoning that: | |
1. Creates quantum states | |
2. Applies quantum operations | |
3. Measures outcomes | |
4. Handles superposition | |
5. Models entanglement | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize quantum reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Configure quantum parameters | |
self.num_qubits = self.config.get('num_qubits', 3) | |
self.measurement_threshold = self.config.get('measurement_threshold', 0.1) | |
self.decoherence_rate = self.config.get('decoherence_rate', 0.01) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Apply quantum reasoning to analyze complex decisions. | |
Args: | |
query: The input query to reason about | |
context: Additional context and parameters | |
Returns: | |
Dict containing reasoning results and confidence scores | |
""" | |
try: | |
# Initialize quantum states | |
states = await self._initialize_states(query, context) | |
# Apply quantum operations | |
evolved_states = await self._apply_operations(states, context) | |
# Measure outcomes | |
measurements = await self._measure_states(evolved_states, context) | |
# Generate analysis | |
analysis = await self._generate_analysis(measurements, context) | |
return { | |
'answer': self._format_analysis(analysis), | |
'confidence': self._calculate_confidence(measurements), | |
'states': states, | |
'evolved_states': evolved_states, | |
'measurements': measurements, | |
'analysis': analysis | |
} | |
except Exception as e: | |
logging.error(f"Quantum reasoning failed: {str(e)}") | |
return { | |
'error': f"Quantum reasoning failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
async def _initialize_states( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> List[QuantumState]: | |
"""Initialize quantum states.""" | |
states = [] | |
# Extract key terms for state initialization | |
terms = set(query.lower().split()) | |
# Create quantum states based on terms | |
for i, term in enumerate(terms): | |
if i >= self.num_qubits: | |
break | |
# Calculate initial amplitude and phase | |
amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits])) | |
phase = 2 * np.pi * i / len(terms[:self.num_qubits]) | |
states.append(QuantumState( | |
name=term, | |
amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)), | |
phase=phase | |
)) | |
# Create entangled states if specified | |
if context.get('entangle', False): | |
self._entangle_states(states) | |
return states | |
async def _apply_operations( | |
self, | |
states: List[QuantumState], | |
context: Dict[str, Any] | |
) -> List[QuantumState]: | |
"""Apply quantum operations to states.""" | |
evolved_states = [] | |
# Get operation parameters | |
rotation = context.get('rotation', 0.0) | |
phase_shift = context.get('phase_shift', 0.0) | |
for state in states: | |
# Apply rotation | |
rotated_amplitude = state.amplitude * np.exp(1j * rotation) | |
# Apply phase shift | |
shifted_phase = (state.phase + phase_shift) % (2 * np.pi) | |
# Apply decoherence | |
decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate) | |
evolved_states.append(QuantumState( | |
name=state.name, | |
amplitude=decohered_amplitude, | |
phase=shifted_phase, | |
entangled_states=state.entangled_states.copy() | |
)) | |
return evolved_states | |
async def _measure_states( | |
self, | |
states: List[QuantumState], | |
context: Dict[str, Any] | |
) -> Dict[str, float]: | |
"""Measure quantum states.""" | |
measurements = {} | |
# Calculate total probability | |
total_probability = sum( | |
abs(state.amplitude) ** 2 | |
for state in states | |
) | |
if total_probability > 0: | |
# Normalize and store measurements | |
for state in states: | |
probability = (abs(state.amplitude) ** 2) / total_probability | |
if probability > self.measurement_threshold: | |
measurements[state.name] = probability | |
return measurements | |
def _entangle_states(self, states: List[QuantumState]) -> None: | |
"""Create entanglement between states.""" | |
if len(states) < 2: | |
return | |
# Simple entanglement: connect adjacent states | |
for i in range(len(states) - 1): | |
states[i].entangled_states.append(states[i + 1].name) | |
states[i + 1].entangled_states.append(states[i].name) | |
async def _generate_analysis( | |
self, | |
measurements: Dict[str, float], | |
context: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Generate quantum analysis.""" | |
# Sort states by measurement probability | |
ranked_states = sorted( | |
measurements.items(), | |
key=lambda x: x[1], | |
reverse=True | |
) | |
# Calculate quantum statistics | |
amplitudes = list(measurements.values()) | |
mean = np.mean(amplitudes) if amplitudes else 0 | |
std = np.std(amplitudes) if amplitudes else 0 | |
# Calculate quantum entropy | |
entropy = -sum( | |
p * np.log2(p) if p > 0 else 0 | |
for p in measurements.values() | |
) | |
return { | |
'top_state': ranked_states[0][0] if ranked_states else '', | |
'probability': ranked_states[0][1] if ranked_states else 0, | |
'alternatives': [ | |
{'name': name, 'probability': prob} | |
for name, prob in ranked_states[1:] | |
], | |
'statistics': { | |
'mean': mean, | |
'std': std, | |
'entropy': entropy | |
} | |
} | |
def _format_analysis(self, analysis: Dict[str, Any]) -> str: | |
"""Format analysis into readable text.""" | |
sections = [] | |
# Top quantum state | |
if analysis['top_state']: | |
sections.append( | |
f"Most probable quantum state: {analysis['top_state']} " | |
f"(probability: {analysis['probability']:.2%})" | |
) | |
# Alternative states | |
if analysis['alternatives']: | |
sections.append("\nAlternative quantum states:") | |
for alt in analysis['alternatives']: | |
sections.append( | |
f"- {alt['name']}: {alt['probability']:.2%}" | |
) | |
# Quantum statistics | |
stats = analysis['statistics'] | |
sections.append("\nQuantum statistics:") | |
sections.append(f"- Mean amplitude: {stats['mean']:.2%}") | |
sections.append(f"- Standard deviation: {stats['std']:.2%}") | |
sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits") | |
return "\n".join(sections) | |
def _calculate_confidence(self, measurements: Dict[str, float]) -> float: | |
"""Calculate overall confidence score.""" | |
if not measurements: | |
return 0.0 | |
# Base confidence | |
confidence = 0.5 | |
# Adjust based on measurement distribution | |
probs = list(measurements.values()) | |
# Strong leading measurement increases confidence | |
max_prob = max(probs) | |
if max_prob > 0.8: | |
confidence += 0.3 | |
elif max_prob > 0.6: | |
confidence += 0.2 | |
elif max_prob > 0.4: | |
confidence += 0.1 | |
# Low entropy (clear distinction) increases confidence | |
entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs) | |
max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy | |
if entropy < 0.3 * max_entropy: | |
confidence += 0.2 | |
elif entropy < 0.6 * max_entropy: | |
confidence += 0.1 | |
return min(confidence, 1.0) | |
class QuantumInspiredStrategy(ReasoningStrategy): | |
"""Implements Quantum-Inspired reasoning.""" | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Create a clean context for serialization | |
clean_context = {k: v for k, v in context.items() if k != "groq_api"} | |
prompt = f""" | |
You are a meta-learning reasoning system that adapts its approach based on problem characteristics. | |
Problem Type: | |
Query: {query} | |
Context: {json.dumps(clean_context)} | |
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows: | |
PROBLEM ANALYSIS: | |
- [First key aspect or complexity factor] | |
- [Second key aspect or complexity factor] | |
- [Third key aspect or complexity factor] | |
SOLUTION PATHS: | |
- Path 1: [Specific solution approach] | |
- Path 2: [Alternative solution approach] | |
- Path 3: [Another alternative approach] | |
META INSIGHTS: | |
- Learning 1: [Key insight about the problem space] | |
- Learning 2: [Key insight about solution approaches] | |
- Learning 3: [Key insight about trade-offs] | |
CONCLUSION: | |
[Final synthesized solution incorporating meta-learnings] | |
""" | |
response = await context["groq_api"].predict(prompt) | |
if not response["success"]: | |
return response | |
# Parse response into components | |
lines = response["answer"].split("\n") | |
problem_analysis = [] | |
solution_paths = [] | |
meta_insights = [] | |
conclusion = "" | |
section = None | |
for line in lines: | |
line = line.strip() | |
if not line: | |
continue | |
if "PROBLEM ANALYSIS:" in line: | |
section = "analysis" | |
elif "SOLUTION PATHS:" in line: | |
section = "paths" | |
elif "META INSIGHTS:" in line: | |
section = "insights" | |
elif "CONCLUSION:" in line: | |
section = "conclusion" | |
elif line.startswith("-"): | |
content = line.lstrip("- ").strip() | |
if section == "analysis": | |
problem_analysis.append(content) | |
elif section == "paths": | |
solution_paths.append(content) | |
elif section == "insights": | |
meta_insights.append(content) | |
elif section == "conclusion": | |
conclusion += line + " " | |
return { | |
"success": True, | |
"problem_analysis": problem_analysis, | |
"solution_paths": solution_paths, | |
"meta_insights": meta_insights, | |
"conclusion": conclusion.strip(), | |
# Add standard fields for compatibility | |
"reasoning_path": problem_analysis + solution_paths + meta_insights, | |
"conclusion": conclusion.strip() | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |