Spaces:
Runtime error
Runtime error
File size: 13,164 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
"""Quantum-inspired reasoning implementations."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class QuantumState:
"""Quantum state with superposition and entanglement."""
name: str
amplitude: complex
phase: float
entangled_states: List[str] = field(default_factory=list)
class QuantumReasoning(ReasoningStrategy):
"""
Advanced quantum reasoning that:
1. Creates quantum states
2. Applies quantum operations
3. Measures outcomes
4. Handles superposition
5. Models entanglement
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize quantum reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Configure quantum parameters
self.num_qubits = self.config.get('num_qubits', 3)
self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply quantum reasoning to analyze complex decisions.
Args:
query: The input query to reason about
context: Additional context and parameters
Returns:
Dict containing reasoning results and confidence scores
"""
try:
# Initialize quantum states
states = await self._initialize_states(query, context)
# Apply quantum operations
evolved_states = await self._apply_operations(states, context)
# Measure outcomes
measurements = await self._measure_states(evolved_states, context)
# Generate analysis
analysis = await self._generate_analysis(measurements, context)
return {
'answer': self._format_analysis(analysis),
'confidence': self._calculate_confidence(measurements),
'states': states,
'evolved_states': evolved_states,
'measurements': measurements,
'analysis': analysis
}
except Exception as e:
logging.error(f"Quantum reasoning failed: {str(e)}")
return {
'error': f"Quantum reasoning failed: {str(e)}",
'confidence': 0.0
}
async def _initialize_states(
self,
query: str,
context: Dict[str, Any]
) -> List[QuantumState]:
"""Initialize quantum states."""
states = []
# Extract key terms for state initialization
terms = set(query.lower().split())
# Create quantum states based on terms
for i, term in enumerate(terms):
if i >= self.num_qubits:
break
# Calculate initial amplitude and phase
amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits]))
phase = 2 * np.pi * i / len(terms[:self.num_qubits])
states.append(QuantumState(
name=term,
amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)),
phase=phase
))
# Create entangled states if specified
if context.get('entangle', False):
self._entangle_states(states)
return states
async def _apply_operations(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> List[QuantumState]:
"""Apply quantum operations to states."""
evolved_states = []
# Get operation parameters
rotation = context.get('rotation', 0.0)
phase_shift = context.get('phase_shift', 0.0)
for state in states:
# Apply rotation
rotated_amplitude = state.amplitude * np.exp(1j * rotation)
# Apply phase shift
shifted_phase = (state.phase + phase_shift) % (2 * np.pi)
# Apply decoherence
decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate)
evolved_states.append(QuantumState(
name=state.name,
amplitude=decohered_amplitude,
phase=shifted_phase,
entangled_states=state.entangled_states.copy()
))
return evolved_states
async def _measure_states(
self,
states: List[QuantumState],
context: Dict[str, Any]
) -> Dict[str, float]:
"""Measure quantum states."""
measurements = {}
# Calculate total probability
total_probability = sum(
abs(state.amplitude) ** 2
for state in states
)
if total_probability > 0:
# Normalize and store measurements
for state in states:
probability = (abs(state.amplitude) ** 2) / total_probability
if probability > self.measurement_threshold:
measurements[state.name] = probability
return measurements
def _entangle_states(self, states: List[QuantumState]) -> None:
"""Create entanglement between states."""
if len(states) < 2:
return
# Simple entanglement: connect adjacent states
for i in range(len(states) - 1):
states[i].entangled_states.append(states[i + 1].name)
states[i + 1].entangled_states.append(states[i].name)
async def _generate_analysis(
self,
measurements: Dict[str, float],
context: Dict[str, Any]
) -> Dict[str, Any]:
"""Generate quantum analysis."""
# Sort states by measurement probability
ranked_states = sorted(
measurements.items(),
key=lambda x: x[1],
reverse=True
)
# Calculate quantum statistics
amplitudes = list(measurements.values())
mean = np.mean(amplitudes) if amplitudes else 0
std = np.std(amplitudes) if amplitudes else 0
# Calculate quantum entropy
entropy = -sum(
p * np.log2(p) if p > 0 else 0
for p in measurements.values()
)
return {
'top_state': ranked_states[0][0] if ranked_states else '',
'probability': ranked_states[0][1] if ranked_states else 0,
'alternatives': [
{'name': name, 'probability': prob}
for name, prob in ranked_states[1:]
],
'statistics': {
'mean': mean,
'std': std,
'entropy': entropy
}
}
def _format_analysis(self, analysis: Dict[str, Any]) -> str:
"""Format analysis into readable text."""
sections = []
# Top quantum state
if analysis['top_state']:
sections.append(
f"Most probable quantum state: {analysis['top_state']} "
f"(probability: {analysis['probability']:.2%})"
)
# Alternative states
if analysis['alternatives']:
sections.append("\nAlternative quantum states:")
for alt in analysis['alternatives']:
sections.append(
f"- {alt['name']}: {alt['probability']:.2%}"
)
# Quantum statistics
stats = analysis['statistics']
sections.append("\nQuantum statistics:")
sections.append(f"- Mean amplitude: {stats['mean']:.2%}")
sections.append(f"- Standard deviation: {stats['std']:.2%}")
sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits")
return "\n".join(sections)
def _calculate_confidence(self, measurements: Dict[str, float]) -> float:
"""Calculate overall confidence score."""
if not measurements:
return 0.0
# Base confidence
confidence = 0.5
# Adjust based on measurement distribution
probs = list(measurements.values())
# Strong leading measurement increases confidence
max_prob = max(probs)
if max_prob > 0.8:
confidence += 0.3
elif max_prob > 0.6:
confidence += 0.2
elif max_prob > 0.4:
confidence += 0.1
# Low entropy (clear distinction) increases confidence
entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
if entropy < 0.3 * max_entropy:
confidence += 0.2
elif entropy < 0.6 * max_entropy:
confidence += 0.1
return min(confidence, 1.0)
class QuantumInspiredStrategy(ReasoningStrategy):
"""Implements Quantum-Inspired reasoning."""
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Create a clean context for serialization
clean_context = {k: v for k, v in context.items() if k != "groq_api"}
prompt = f"""
You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
Problem Type:
Query: {query}
Context: {json.dumps(clean_context)}
Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
PROBLEM ANALYSIS:
- [First key aspect or complexity factor]
- [Second key aspect or complexity factor]
- [Third key aspect or complexity factor]
SOLUTION PATHS:
- Path 1: [Specific solution approach]
- Path 2: [Alternative solution approach]
- Path 3: [Another alternative approach]
META INSIGHTS:
- Learning 1: [Key insight about the problem space]
- Learning 2: [Key insight about solution approaches]
- Learning 3: [Key insight about trade-offs]
CONCLUSION:
[Final synthesized solution incorporating meta-learnings]
"""
response = await context["groq_api"].predict(prompt)
if not response["success"]:
return response
# Parse response into components
lines = response["answer"].split("\n")
problem_analysis = []
solution_paths = []
meta_insights = []
conclusion = ""
section = None
for line in lines:
line = line.strip()
if not line:
continue
if "PROBLEM ANALYSIS:" in line:
section = "analysis"
elif "SOLUTION PATHS:" in line:
section = "paths"
elif "META INSIGHTS:" in line:
section = "insights"
elif "CONCLUSION:" in line:
section = "conclusion"
elif line.startswith("-"):
content = line.lstrip("- ").strip()
if section == "analysis":
problem_analysis.append(content)
elif section == "paths":
solution_paths.append(content)
elif section == "insights":
meta_insights.append(content)
elif section == "conclusion":
conclusion += line + " "
return {
"success": True,
"problem_analysis": problem_analysis,
"solution_paths": solution_paths,
"meta_insights": meta_insights,
"conclusion": conclusion.strip(),
# Add standard fields for compatibility
"reasoning_path": problem_analysis + solution_paths + meta_insights,
"conclusion": conclusion.strip()
}
except Exception as e:
return {"success": False, "error": str(e)}
|