File size: 13,164 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""Quantum-inspired reasoning implementations."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class QuantumState:
    """Quantum state with superposition and entanglement."""
    name: str
    amplitude: complex
    phase: float
    entangled_states: List[str] = field(default_factory=list)

class QuantumReasoning(ReasoningStrategy):
    """
    Advanced quantum reasoning that:
    1. Creates quantum states
    2. Applies quantum operations
    3. Measures outcomes
    4. Handles superposition
    5. Models entanglement
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize quantum reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Configure quantum parameters
        self.num_qubits = self.config.get('num_qubits', 3)
        self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
        self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply quantum reasoning to analyze complex decisions.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            Dict containing reasoning results and confidence scores
        """
        try:
            # Initialize quantum states
            states = await self._initialize_states(query, context)
            
            # Apply quantum operations
            evolved_states = await self._apply_operations(states, context)
            
            # Measure outcomes
            measurements = await self._measure_states(evolved_states, context)
            
            # Generate analysis
            analysis = await self._generate_analysis(measurements, context)
            
            return {
                'answer': self._format_analysis(analysis),
                'confidence': self._calculate_confidence(measurements),
                'states': states,
                'evolved_states': evolved_states,
                'measurements': measurements,
                'analysis': analysis
            }
            
        except Exception as e:
            logging.error(f"Quantum reasoning failed: {str(e)}")
            return {
                'error': f"Quantum reasoning failed: {str(e)}",
                'confidence': 0.0
            }
    
    async def _initialize_states(
        self,
        query: str,
        context: Dict[str, Any]
    ) -> List[QuantumState]:
        """Initialize quantum states."""
        states = []
        
        # Extract key terms for state initialization
        terms = set(query.lower().split())
        
        # Create quantum states based on terms
        for i, term in enumerate(terms):
            if i >= self.num_qubits:
                break
                
            # Calculate initial amplitude and phase
            amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits]))
            phase = 2 * np.pi * i / len(terms[:self.num_qubits])
            
            states.append(QuantumState(
                name=term,
                amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)),
                phase=phase
            ))
        
        # Create entangled states if specified
        if context.get('entangle', False):
            self._entangle_states(states)
        
        return states
    
    async def _apply_operations(
        self,
        states: List[QuantumState],
        context: Dict[str, Any]
    ) -> List[QuantumState]:
        """Apply quantum operations to states."""
        evolved_states = []
        
        # Get operation parameters
        rotation = context.get('rotation', 0.0)
        phase_shift = context.get('phase_shift', 0.0)
        
        for state in states:
            # Apply rotation
            rotated_amplitude = state.amplitude * np.exp(1j * rotation)
            
            # Apply phase shift
            shifted_phase = (state.phase + phase_shift) % (2 * np.pi)
            
            # Apply decoherence
            decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate)
            
            evolved_states.append(QuantumState(
                name=state.name,
                amplitude=decohered_amplitude,
                phase=shifted_phase,
                entangled_states=state.entangled_states.copy()
            ))
        
        return evolved_states
    
    async def _measure_states(
        self,
        states: List[QuantumState],
        context: Dict[str, Any]
    ) -> Dict[str, float]:
        """Measure quantum states."""
        measurements = {}
        
        # Calculate total probability
        total_probability = sum(
            abs(state.amplitude) ** 2
            for state in states
        )
        
        if total_probability > 0:
            # Normalize and store measurements
            for state in states:
                probability = (abs(state.amplitude) ** 2) / total_probability
                if probability > self.measurement_threshold:
                    measurements[state.name] = probability
        
        return measurements
    
    def _entangle_states(self, states: List[QuantumState]) -> None:
        """Create entanglement between states."""
        if len(states) < 2:
            return
            
        # Simple entanglement: connect adjacent states
        for i in range(len(states) - 1):
            states[i].entangled_states.append(states[i + 1].name)
            states[i + 1].entangled_states.append(states[i].name)
    
    async def _generate_analysis(
        self,
        measurements: Dict[str, float],
        context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Generate quantum analysis."""
        # Sort states by measurement probability
        ranked_states = sorted(
            measurements.items(),
            key=lambda x: x[1],
            reverse=True
        )
        
        # Calculate quantum statistics
        amplitudes = list(measurements.values())
        mean = np.mean(amplitudes) if amplitudes else 0
        std = np.std(amplitudes) if amplitudes else 0
        
        # Calculate quantum entropy
        entropy = -sum(
            p * np.log2(p) if p > 0 else 0
            for p in measurements.values()
        )
        
        return {
            'top_state': ranked_states[0][0] if ranked_states else '',
            'probability': ranked_states[0][1] if ranked_states else 0,
            'alternatives': [
                {'name': name, 'probability': prob}
                for name, prob in ranked_states[1:]
            ],
            'statistics': {
                'mean': mean,
                'std': std,
                'entropy': entropy
            }
        }
    
    def _format_analysis(self, analysis: Dict[str, Any]) -> str:
        """Format analysis into readable text."""
        sections = []
        
        # Top quantum state
        if analysis['top_state']:
            sections.append(
                f"Most probable quantum state: {analysis['top_state']} "
                f"(probability: {analysis['probability']:.2%})"
            )
        
        # Alternative states
        if analysis['alternatives']:
            sections.append("\nAlternative quantum states:")
            for alt in analysis['alternatives']:
                sections.append(
                    f"- {alt['name']}: {alt['probability']:.2%}"
                )
        
        # Quantum statistics
        stats = analysis['statistics']
        sections.append("\nQuantum statistics:")
        sections.append(f"- Mean amplitude: {stats['mean']:.2%}")
        sections.append(f"- Standard deviation: {stats['std']:.2%}")
        sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits")
        
        return "\n".join(sections)
    
    def _calculate_confidence(self, measurements: Dict[str, float]) -> float:
        """Calculate overall confidence score."""
        if not measurements:
            return 0.0
        
        # Base confidence
        confidence = 0.5
        
        # Adjust based on measurement distribution
        probs = list(measurements.values())
        
        # Strong leading measurement increases confidence
        max_prob = max(probs)
        if max_prob > 0.8:
            confidence += 0.3
        elif max_prob > 0.6:
            confidence += 0.2
        elif max_prob > 0.4:
            confidence += 0.1
        
        # Low entropy (clear distinction) increases confidence
        entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
        max_entropy = -np.log2(1/len(probs))  # Maximum possible entropy
        
        if entropy < 0.3 * max_entropy:
            confidence += 0.2
        elif entropy < 0.6 * max_entropy:
            confidence += 0.1
        
        return min(confidence, 1.0)


class QuantumInspiredStrategy(ReasoningStrategy):
    """Implements Quantum-Inspired reasoning."""
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Create a clean context for serialization
            clean_context = {k: v for k, v in context.items() if k != "groq_api"}
            
            prompt = f"""
            You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
            
            Problem Type: 
            Query: {query}
            Context: {json.dumps(clean_context)}
            
            Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:

            PROBLEM ANALYSIS:
            - [First key aspect or complexity factor]
            - [Second key aspect or complexity factor]
            - [Third key aspect or complexity factor]

            SOLUTION PATHS:
            - Path 1: [Specific solution approach]
            - Path 2: [Alternative solution approach]
            - Path 3: [Another alternative approach]

            META INSIGHTS:
            - Learning 1: [Key insight about the problem space]
            - Learning 2: [Key insight about solution approaches]
            - Learning 3: [Key insight about trade-offs]

            CONCLUSION:
            [Final synthesized solution incorporating meta-learnings]
            """
            
            response = await context["groq_api"].predict(prompt)
            
            if not response["success"]:
                return response
                
            # Parse response into components
            lines = response["answer"].split("\n")
            problem_analysis = []
            solution_paths = []
            meta_insights = []
            conclusion = ""
            
            section = None
            for line in lines:
                line = line.strip()
                if not line:
                    continue
                    
                if "PROBLEM ANALYSIS:" in line:
                    section = "analysis"
                elif "SOLUTION PATHS:" in line:
                    section = "paths"
                elif "META INSIGHTS:" in line:
                    section = "insights"
                elif "CONCLUSION:" in line:
                    section = "conclusion"
                elif line.startswith("-"):
                    content = line.lstrip("- ").strip()
                    if section == "analysis":
                        problem_analysis.append(content)
                    elif section == "paths":
                        solution_paths.append(content)
                    elif section == "insights":
                        meta_insights.append(content)
                elif section == "conclusion":
                    conclusion += line + " "
            
            return {
                "success": True,
                "problem_analysis": problem_analysis,
                "solution_paths": solution_paths,
                "meta_insights": meta_insights,
                "conclusion": conclusion.strip(),
                # Add standard fields for compatibility
                "reasoning_path": problem_analysis + solution_paths + meta_insights,
                "conclusion": conclusion.strip()
            }
            
        except Exception as e:
            return {"success": False, "error": str(e)}