Cascade Bot commited on
Commit
1d75522
·
0 Parent(s):

Added Groq streaming support and optimizations - clean version

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
.github/workflows/sync-to-space.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face Space
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ jobs:
7
+ sync-to-space:
8
+ runs-on: ubuntu-latest
9
+ steps:
10
+ - uses: actions/checkout@v2
11
+ with:
12
+ fetch-depth: 0
13
+ - name: Push to Space
14
+ env:
15
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
16
+ run: |
17
+ git push https://USER:[email protected]/spaces/USER/SPACE_NAME main
.gitignore ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+ build/
8
+ develop-eggs/
9
+ dist/
10
+ downloads/
11
+ eggs/
12
+ .eggs/
13
+ lib/
14
+ lib64/
15
+ parts/
16
+ sdist/
17
+ var/
18
+ wheels/
19
+ *.egg-info/
20
+ .installed.cfg
21
+ *.egg
22
+
23
+ # Virtual Environment
24
+ venv/
25
+ env/
26
+ ENV/
27
+
28
+ # IDE
29
+ .idea/
30
+ .vscode/
31
+ *.swp
32
+ *.swo
33
+
34
+ # Logs
35
+ *.log
36
+ logs/
37
+ log/
38
+
39
+ # Local development
40
+ .env
41
+ .env.local
42
+ .env.*.local
43
+
44
+ # Data
45
+ data/
46
+ *.db
47
+ *.sqlite3
48
+
49
+ # Model files
50
+ *.pt
51
+ *.pth
52
+ *.ckpt
53
+ *.bin
54
+ *.onnx
55
+
56
+ # Temporary files
57
+ .DS_Store
58
+ Thumbs.db
59
+ *.tmp
60
+ *.bak
61
+ *.swp
62
+ *~
63
+
64
+ # Distribution
65
+ dist/
66
+ build/
67
+ *.egg-info/
68
+
69
+ # Documentation
70
+ docs/_build/
71
+ site/
72
+
73
+ # Testing
74
+ .coverage
75
+ htmlcov/
76
+ .pytest_cache/
77
+ .tox/
78
+ nosetests.xml
79
+ coverage.xml
80
+ *.cover
81
+ .hypothesis/
82
+
83
+ # Jupyter Notebook
84
+ .ipynb_checkpoints
85
+ *.ipynb
86
+
87
+ # Project specific
88
+ outputs/
89
+ results/
90
+ experiments/
91
+ checkpoints/
Dockerfile ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.10-slim
2
+
3
+ # Set environment variables
4
+ ENV PYTHONUNBUFFERED=1 \
5
+ DEBIAN_FRONTEND=noninteractive \
6
+ REQUESTS_TIMEOUT=30 \
7
+ PYTHONPATH=/app
8
+
9
+ # Install system dependencies
10
+ RUN apt-get update && apt-get install -y \
11
+ build-essential \
12
+ curl \
13
+ git \
14
+ dnsutils \
15
+ iputils-ping \
16
+ && rm -rf /var/lib/apt/lists/*
17
+
18
+ # Set working directory
19
+ WORKDIR /app
20
+
21
+ # Set up DNS configuration with multiple DNS servers for redundancy
22
+ RUN echo "nameserver 8.8.8.8" > /etc/resolv.conf && \
23
+ echo "nameserver 8.8.4.4" >> /etc/resolv.conf && \
24
+ echo "nameserver 1.1.1.1" >> /etc/resolv.conf && \
25
+ echo "options timeout:1 attempts:5" >> /etc/resolv.conf
26
+
27
+ # Copy requirements first to leverage Docker cache
28
+ COPY requirements.txt .
29
+
30
+ # Install Python dependencies with retry mechanism and explicit Gradio upgrade
31
+ RUN pip install --no-cache-dir -r requirements.txt || \
32
+ (sleep 5 && pip install --no-cache-dir -r requirements.txt) || \
33
+ (sleep 10 && pip install --no-cache-dir -r requirements.txt) && \
34
+ pip install --no-cache-dir gradio==4.44.1
35
+
36
+ # Copy application code
37
+ COPY . .
38
+
39
+ # Expose port
40
+ EXPOSE 7860
41
+
42
+ # Add network verification script
43
+ RUN echo '#!/bin/sh\n\
44
+ ping -c 1 huggingface.co || ping -c 1 8.8.8.8\n\
45
+ ' > /healthcheck.sh && chmod +x /healthcheck.sh
46
+
47
+ # Healthcheck with more lenient settings
48
+ HEALTHCHECK --interval=30s --timeout=10s --start-period=30s --retries=5 \
49
+ CMD /healthcheck.sh || exit 1
50
+
51
+ # Command to run the application
52
+ CMD ["python", "app.py"]
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Advanced Reasoning System 🤖
3
+ emoji: 🤖
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 4.16.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ # Advanced Reasoning System 🤖
14
+
15
+ A sophisticated multi-agent reasoning system that combines multiple strategies for advanced problem-solving.
16
+
17
+ ## Features
18
+
19
+ - 🧠 Multiple Reasoning Strategies:
20
+ - Chain of Thought
21
+ - Tree of Thoughts
22
+ - Meta Learning
23
+ - Local LLM Integration
24
+ - Recursive Reasoning
25
+ - Analogical Reasoning
26
+
27
+ - 🤝 Multi-Agent System:
28
+ - Dynamic Team Formation
29
+ - Cross-Team Collaboration
30
+ - Resource Management
31
+ - Task Orchestration
32
+
33
+ - 🔄 Adaptive Learning:
34
+ - Performance Tracking
35
+ - Strategy Weight Adjustment
36
+ - Pattern Recognition
37
+ - Meta-Learning Integration
38
+
39
+ ## Quick Start
40
+
41
+ 1. **Environment Setup**:
42
+ ```bash
43
+ python -m venv venv
44
+ source venv/bin/activate # On Windows: .\venv\Scripts\activate
45
+ pip install -r requirements.txt
46
+ ```
47
+
48
+ 2. **Configuration**:
49
+ ```bash
50
+ cp .env.example .env
51
+ # Edit .env with your settings
52
+ ```
53
+
54
+ 3. **Run the Application**:
55
+ ```bash
56
+ python app.py
57
+ ```
58
+
59
+ ## Docker Support
60
+
61
+ Build and run with Docker:
62
+
63
+ ```bash
64
+ docker build -t advanced-reasoning .
65
+ docker run -p 7860:7860 advanced-reasoning
66
+ ```
67
+
68
+ ## API Endpoints
69
+
70
+ - `/`: Main interface
71
+ - `/health`: Health check endpoint
72
+ - `/api/process_query`: Process queries via API
73
+
74
+ ## Components
75
+
76
+ 1. **Reasoning Engine**:
77
+ - Unified reasoning combining multiple strategies
78
+ - Dynamic strategy selection
79
+ - Result synthesis
80
+
81
+ 2. **Team Management**:
82
+ - Specialized teams (Coders, Business, Research, Trading)
83
+ - Cross-team collaboration
84
+ - Resource sharing
85
+
86
+ 3. **Orchestration**:
87
+ - Task planning and decomposition
88
+ - Resource allocation
89
+ - Performance monitoring
90
+
91
+ ## Contributing
92
+
93
+ 1. Fork the repository
94
+ 2. Create your feature branch
95
+ 3. Commit your changes
96
+ 4. Push to the branch
97
+ 5. Create a Pull Request
98
+
99
+ ## License
100
+
101
+ MIT License - see LICENSE file for details
102
+
103
+ ## Files
104
+ - `app.py`: Main application with Gradio interface and API integration
105
+ - `requirements.txt`: Project dependencies
106
+ - `.env.example`: Example environment variables (for reference)
107
+
108
+ ## Dependencies
109
+ - gradio==4.16.0
110
+ - requests==2.31.0
111
+
112
+ ---
113
+ Created with ❤️ using Gradio and Hugging Face
agentic_system.py ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Agentic System
3
+ ----------------------
4
+ A sophisticated multi-agent system with:
5
+
6
+ Core Components:
7
+ 1. Agent Management
8
+ 2. Task Execution
9
+ 3. Learning & Adaptation
10
+ 4. Communication
11
+ 5. Resource Management
12
+
13
+ Advanced Features:
14
+ 1. Self-Improvement
15
+ 2. Multi-Agent Coordination
16
+ 3. Dynamic Role Assignment
17
+ 4. Emergent Behavior
18
+ """
19
+
20
+ import logging
21
+ from typing import Dict, Any, List, Optional, Union, TypeVar
22
+ from dataclasses import dataclass, field
23
+ from enum import Enum
24
+ import json
25
+ import asyncio
26
+ from datetime import datetime
27
+ import uuid
28
+ from concurrent.futures import ThreadPoolExecutor
29
+ import numpy as np
30
+ from collections import defaultdict
31
+
32
+ from orchestrator import (
33
+ AgentOrchestrator,
34
+ AgentRole,
35
+ AgentState,
36
+ TaskPriority,
37
+ Task
38
+ )
39
+ from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
40
+ from reasoning.meta_learning import MetaLearningStrategy
41
+
42
+ class AgentCapability(Enum):
43
+ """Core capabilities of agents."""
44
+ REASONING = "reasoning"
45
+ LEARNING = "learning"
46
+ EXECUTION = "execution"
47
+ COORDINATION = "coordination"
48
+ MONITORING = "monitoring"
49
+
50
+ class AgentPersonality(Enum):
51
+ """Different personality types for agents."""
52
+ ANALYTICAL = "analytical"
53
+ CREATIVE = "creative"
54
+ CAUTIOUS = "cautious"
55
+ PROACTIVE = "proactive"
56
+ ADAPTIVE = "adaptive"
57
+
58
+ @dataclass
59
+ class AgentProfile:
60
+ """Profile defining an agent's characteristics."""
61
+ id: str
62
+ name: str
63
+ role: AgentRole
64
+ capabilities: List[AgentCapability]
65
+ personality: AgentPersonality
66
+ expertise_areas: List[str]
67
+ learning_rate: float
68
+ risk_tolerance: float
69
+ created_at: datetime
70
+ metadata: Dict[str, Any]
71
+
72
+ class Agent:
73
+ """Advanced autonomous agent with learning capabilities."""
74
+
75
+ def __init__(
76
+ self,
77
+ profile: AgentProfile,
78
+ reasoning_engine: ReasoningEngine,
79
+ meta_learning: MetaLearningStrategy,
80
+ config: Dict[str, Any] = None
81
+ ):
82
+ self.profile = profile
83
+ self.reasoning_engine = reasoning_engine
84
+ self.meta_learning = meta_learning
85
+ self.config = config or {}
86
+
87
+ # State management
88
+ self.state = AgentState.IDLE
89
+ self.current_task: Optional[Task] = None
90
+ self.task_history: List[Task] = []
91
+
92
+ # Learning and adaptation
93
+ self.knowledge_base: Dict[str, Any] = {}
94
+ self.learned_patterns: List[Dict[str, Any]] = []
95
+ self.adaptation_history: List[Dict[str, Any]] = []
96
+
97
+ # Performance metrics
98
+ self.metrics: Dict[str, List[float]] = defaultdict(list)
99
+ self.performance_history: List[Dict[str, float]] = []
100
+
101
+ # Communication
102
+ self.message_queue = asyncio.Queue()
103
+ self.response_queue = asyncio.Queue()
104
+
105
+ # Resource management
106
+ self.resource_usage: Dict[str, float] = {}
107
+ self.resource_limits: Dict[str, float] = {}
108
+
109
+ # Async support
110
+ self.executor = ThreadPoolExecutor(max_workers=2)
111
+ self.lock = asyncio.Lock()
112
+
113
+ # Logging
114
+ self.logger = logging.getLogger(f"Agent-{profile.id}")
115
+
116
+ # Initialize components
117
+ self._init_components()
118
+
119
+ def _init_components(self):
120
+ """Initialize agent components."""
121
+ # Set up knowledge base
122
+ self.knowledge_base = {
123
+ "expertise": {area: 0.5 for area in self.profile.expertise_areas},
124
+ "learned_skills": set(),
125
+ "interaction_patterns": defaultdict(int),
126
+ "success_patterns": defaultdict(float)
127
+ }
128
+
129
+ # Set up resource limits
130
+ self.resource_limits = {
131
+ "cpu": 1.0,
132
+ "memory": 1000,
133
+ "api_calls": 100,
134
+ "learning_capacity": 0.8
135
+ }
136
+
137
+ async def process_task(self, task: Task) -> Dict[str, Any]:
138
+ """Process an assigned task."""
139
+ try:
140
+ self.current_task = task
141
+ self.state = AgentState.BUSY
142
+
143
+ # Analyze task
144
+ analysis = await self._analyze_task(task)
145
+
146
+ # Plan execution
147
+ plan = await self._plan_execution(analysis)
148
+
149
+ # Execute plan
150
+ result = await self._execute_plan(plan)
151
+
152
+ # Learn from execution
153
+ await self._learn_from_execution(task, result)
154
+
155
+ # Update metrics
156
+ self._update_metrics(task, result)
157
+
158
+ return {
159
+ "success": True,
160
+ "task_id": task.id,
161
+ "result": result,
162
+ "metrics": self._get_execution_metrics()
163
+ }
164
+
165
+ except Exception as e:
166
+ self.logger.error(f"Error processing task: {e}")
167
+ self.state = AgentState.ERROR
168
+ return {
169
+ "success": False,
170
+ "task_id": task.id,
171
+ "error": str(e)
172
+ }
173
+ finally:
174
+ self.state = AgentState.IDLE
175
+ self.current_task = None
176
+
177
+ async def _analyze_task(self, task: Task) -> Dict[str, Any]:
178
+ """Analyze task requirements and constraints."""
179
+ # Use reasoning engine for analysis
180
+ analysis = await self.reasoning_engine.reason(
181
+ query=task.description,
182
+ context={
183
+ "agent_profile": self.profile.__dict__,
184
+ "task_history": self.task_history,
185
+ "knowledge_base": self.knowledge_base
186
+ },
187
+ mode=ReasoningMode.ANALYTICAL
188
+ )
189
+
190
+ return {
191
+ "requirements": analysis.get("requirements", []),
192
+ "constraints": analysis.get("constraints", []),
193
+ "complexity": analysis.get("complexity", 0.5),
194
+ "estimated_duration": analysis.get("estimated_duration", 3600),
195
+ "required_capabilities": analysis.get("required_capabilities", [])
196
+ }
197
+
198
+ async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
199
+ """Plan task execution based on analysis."""
200
+ # Use reasoning engine for planning
201
+ plan = await self.reasoning_engine.reason(
202
+ query="Plan execution steps",
203
+ context={
204
+ "analysis": analysis,
205
+ "agent_capabilities": self.profile.capabilities,
206
+ "resource_limits": self.resource_limits
207
+ },
208
+ mode=ReasoningMode.FOCUSED
209
+ )
210
+
211
+ return plan.get("steps", [])
212
+
213
+ async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]:
214
+ """Execute the planned steps."""
215
+ results = []
216
+
217
+ for step in plan:
218
+ try:
219
+ # Check resources
220
+ if not self._check_resources(step):
221
+ raise RuntimeError("Insufficient resources for step execution")
222
+
223
+ # Execute step
224
+ step_result = await self._execute_step(step)
225
+ results.append(step_result)
226
+
227
+ # Update resource usage
228
+ self._update_resource_usage(step)
229
+
230
+ # Learn from step execution
231
+ await self._learn_from_step(step, step_result)
232
+
233
+ except Exception as e:
234
+ self.logger.error(f"Error executing step: {e}")
235
+ results.append({"error": str(e)})
236
+
237
+ return {
238
+ "success": all(r.get("success", False) for r in results),
239
+ "results": results
240
+ }
241
+
242
+ async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
243
+ """Execute a single step of the plan."""
244
+ step_type = step.get("type", "unknown")
245
+
246
+ if step_type == "reasoning":
247
+ return await self._execute_reasoning_step(step)
248
+ elif step_type == "learning":
249
+ return await self._execute_learning_step(step)
250
+ elif step_type == "action":
251
+ return await self._execute_action_step(step)
252
+ else:
253
+ raise ValueError(f"Unknown step type: {step_type}")
254
+
255
+ async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
256
+ """Execute a reasoning step."""
257
+ result = await self.reasoning_engine.reason(
258
+ query=step["query"],
259
+ context=step.get("context", {}),
260
+ mode=ReasoningMode.ANALYTICAL
261
+ )
262
+
263
+ return {
264
+ "success": result.get("success", False),
265
+ "reasoning_result": result
266
+ }
267
+
268
+ async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
269
+ """Execute a learning step."""
270
+ result = await self.meta_learning.learn(
271
+ data=step["data"],
272
+ context=step.get("context", {})
273
+ )
274
+
275
+ return {
276
+ "success": result.get("success", False),
277
+ "learning_result": result
278
+ }
279
+
280
+ async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
281
+ """Execute an action step."""
282
+ action_type = step.get("action_type")
283
+
284
+ if action_type == "api_call":
285
+ return await self._make_api_call(step)
286
+ elif action_type == "data_processing":
287
+ return await self._process_data(step)
288
+ elif action_type == "coordination":
289
+ return await self._coordinate_action(step)
290
+ else:
291
+ raise ValueError(f"Unknown action type: {action_type}")
292
+
293
+ def _check_resources(self, step: Dict[str, Any]) -> bool:
294
+ """Check if sufficient resources are available."""
295
+ required_resources = step.get("required_resources", {})
296
+
297
+ for resource, amount in required_resources.items():
298
+ if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')):
299
+ return False
300
+
301
+ return True
302
+
303
+ def _update_resource_usage(self, step: Dict[str, Any]):
304
+ """Update resource usage after step execution."""
305
+ used_resources = step.get("used_resources", {})
306
+
307
+ for resource, amount in used_resources.items():
308
+ self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount
309
+
310
+ async def _learn_from_execution(self, task: Task, result: Dict[str, Any]):
311
+ """Learn from task execution experience."""
312
+ # Prepare learning data
313
+ learning_data = {
314
+ "task": task.__dict__,
315
+ "result": result,
316
+ "context": {
317
+ "agent_state": self.state,
318
+ "resource_usage": self.resource_usage,
319
+ "performance_metrics": self._get_execution_metrics()
320
+ }
321
+ }
322
+
323
+ # Learn patterns
324
+ patterns = await self.meta_learning.learn(
325
+ data=learning_data,
326
+ context=self.knowledge_base
327
+ )
328
+
329
+ # Update knowledge base
330
+ self._update_knowledge_base(patterns)
331
+
332
+ # Record adaptation
333
+ self.adaptation_history.append({
334
+ "timestamp": datetime.now(),
335
+ "patterns": patterns,
336
+ "metrics": self._get_execution_metrics()
337
+ })
338
+
339
+ async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]):
340
+ """Learn from individual step execution."""
341
+ if result.get("success", False):
342
+ # Update success patterns
343
+ pattern_key = f"{step['type']}:{step.get('action_type', 'none')}"
344
+ self.knowledge_base["success_patterns"][pattern_key] += 1
345
+
346
+ # Learn from successful execution
347
+ await self.meta_learning.learn(
348
+ data={
349
+ "step": step,
350
+ "result": result
351
+ },
352
+ context={"pattern_key": pattern_key}
353
+ )
354
+
355
+ def _update_knowledge_base(self, patterns: Dict[str, Any]):
356
+ """Update knowledge base with new patterns."""
357
+ # Update expertise levels
358
+ for area, pattern in patterns.get("expertise_patterns", {}).items():
359
+ if area in self.knowledge_base["expertise"]:
360
+ current = self.knowledge_base["expertise"][area]
361
+ self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1
362
+
363
+ # Add new learned skills
364
+ new_skills = patterns.get("learned_skills", set())
365
+ self.knowledge_base["learned_skills"].update(new_skills)
366
+
367
+ # Update interaction patterns
368
+ for pattern, count in patterns.get("interaction_patterns", {}).items():
369
+ self.knowledge_base["interaction_patterns"][pattern] += count
370
+
371
+ def _update_metrics(self, task: Task, result: Dict[str, Any]):
372
+ """Update performance metrics."""
373
+ metrics = {
374
+ "success": float(result.get("success", False)),
375
+ "duration": (datetime.now() - task.created_at).total_seconds(),
376
+ "resource_efficiency": self._calculate_resource_efficiency(),
377
+ "learning_progress": self._calculate_learning_progress()
378
+ }
379
+
380
+ for key, value in metrics.items():
381
+ self.metrics[key].append(value)
382
+
383
+ self.performance_history.append({
384
+ "timestamp": datetime.now(),
385
+ "metrics": metrics
386
+ })
387
+
388
+ def _calculate_resource_efficiency(self) -> float:
389
+ """Calculate resource usage efficiency."""
390
+ if not self.resource_limits:
391
+ return 1.0
392
+
393
+ efficiencies = []
394
+ for resource, usage in self.resource_usage.items():
395
+ limit = self.resource_limits.get(resource, float('inf'))
396
+ if limit > 0:
397
+ efficiencies.append(1 - (usage / limit))
398
+
399
+ return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0
400
+
401
+ def _calculate_learning_progress(self) -> float:
402
+ """Calculate learning progress."""
403
+ if not self.knowledge_base["expertise"]:
404
+ return 0.0
405
+
406
+ return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"])
407
+
408
+ def _get_execution_metrics(self) -> Dict[str, float]:
409
+ """Get current execution metrics."""
410
+ return {
411
+ key: sum(values[-10:]) / len(values[-10:])
412
+ for key, values in self.metrics.items()
413
+ if values
414
+ }
415
+
416
+ class AgenticSystem:
417
+ """Advanced multi-agent system with orchestration."""
418
+
419
+ def __init__(self, config: Dict[str, Any] = None):
420
+ self.config = config or {}
421
+
422
+ # Initialize orchestrator
423
+ self.orchestrator = AgentOrchestrator(config)
424
+
425
+ # Initialize components
426
+ self.agents: Dict[str, Agent] = {}
427
+ self.reasoning_engine = ReasoningEngine(
428
+ min_confidence=self.config.get('min_confidence', 0.7),
429
+ parallel_threshold=self.config.get('parallel_threshold', 3),
430
+ learning_rate=self.config.get('learning_rate', 0.1),
431
+ strategy_weights=self.config.get('strategy_weights', {
432
+ "LOCAL_LLM": 0.8,
433
+ "CHAIN_OF_THOUGHT": 0.6,
434
+ "TREE_OF_THOUGHTS": 0.5,
435
+ "META_LEARNING": 0.4
436
+ })
437
+ )
438
+ self.meta_learning = MetaLearningStrategy(config)
439
+
440
+ # System state
441
+ self.state = "initialized"
442
+ self.metrics: Dict[str, List[float]] = defaultdict(list)
443
+
444
+ # Async support
445
+ self.executor = ThreadPoolExecutor(max_workers=4)
446
+ self.lock = asyncio.Lock()
447
+
448
+ # Logging
449
+ self.logger = logging.getLogger("AgenticSystem")
450
+
451
+ async def create_agent(
452
+ self,
453
+ name: str,
454
+ role: AgentRole,
455
+ capabilities: List[AgentCapability],
456
+ personality: AgentPersonality,
457
+ expertise_areas: List[str]
458
+ ) -> str:
459
+ """Create a new agent."""
460
+ # Create agent profile
461
+ profile = AgentProfile(
462
+ id=str(uuid.uuid4()),
463
+ name=name,
464
+ role=role,
465
+ capabilities=capabilities,
466
+ personality=personality,
467
+ expertise_areas=expertise_areas,
468
+ learning_rate=0.1,
469
+ risk_tolerance=0.5,
470
+ created_at=datetime.now(),
471
+ metadata={}
472
+ )
473
+
474
+ # Create agent instance
475
+ agent = Agent(
476
+ profile=profile,
477
+ reasoning_engine=self.reasoning_engine,
478
+ meta_learning=self.meta_learning,
479
+ config=self.config.get("agent_config", {})
480
+ )
481
+
482
+ # Register with orchestrator
483
+ agent_id = await self.orchestrator.register_agent(
484
+ role=role,
485
+ capabilities=[c.value for c in capabilities]
486
+ )
487
+
488
+ # Store agent
489
+ async with self.lock:
490
+ self.agents[agent_id] = agent
491
+
492
+ return agent_id
493
+
494
+ async def submit_task(
495
+ self,
496
+ description: str,
497
+ priority: TaskPriority = TaskPriority.MEDIUM,
498
+ deadline: Optional[datetime] = None
499
+ ) -> str:
500
+ """Submit a task to the system."""
501
+ return await self.orchestrator.submit_task(
502
+ description=description,
503
+ priority=priority,
504
+ deadline=deadline
505
+ )
506
+
507
+ async def get_task_status(self, task_id: str) -> Dict[str, Any]:
508
+ """Get status of a task."""
509
+ return await self.orchestrator.get_task_status(task_id)
510
+
511
+ async def get_agent_status(self, agent_id: str) -> Dict[str, Any]:
512
+ """Get status of an agent."""
513
+ agent = self.agents.get(agent_id)
514
+ if not agent:
515
+ raise ValueError(f"Unknown agent: {agent_id}")
516
+
517
+ return {
518
+ "profile": agent.profile.__dict__,
519
+ "state": agent.state,
520
+ "current_task": agent.current_task.__dict__ if agent.current_task else None,
521
+ "metrics": agent._get_execution_metrics(),
522
+ "resource_usage": agent.resource_usage
523
+ }
524
+
525
+ async def get_system_status(self) -> Dict[str, Any]:
526
+ """Get overall system status."""
527
+ return {
528
+ "state": self.state,
529
+ "agent_count": len(self.agents),
530
+ "active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]),
531
+ "performance_metrics": self._calculate_system_metrics(),
532
+ "resource_usage": self._calculate_resource_usage()
533
+ }
534
+
535
+ def _calculate_system_metrics(self) -> Dict[str, float]:
536
+ """Calculate overall system metrics."""
537
+ metrics = defaultdict(list)
538
+
539
+ for agent in self.agents.values():
540
+ agent_metrics = agent._get_execution_metrics()
541
+ for key, value in agent_metrics.items():
542
+ metrics[key].append(value)
543
+
544
+ return {
545
+ key: sum(values) / len(values)
546
+ for key, values in metrics.items()
547
+ if values
548
+ }
549
+
550
+ def _calculate_resource_usage(self) -> Dict[str, float]:
551
+ """Calculate overall resource usage."""
552
+ usage = defaultdict(float)
553
+
554
+ for agent in self.agents.values():
555
+ for resource, amount in agent.resource_usage.items():
556
+ usage[resource] += amount
557
+
558
+ return dict(usage)
api/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ """API package for the agentic system."""
2
+
3
+ from .openai_compatible import OpenAICompatibleAPI
4
+ from .venture_api import VentureAPI
5
+
6
+ __all__ = ['OpenAICompatibleAPI', 'VentureAPI']
api/openai_compatible.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """OpenAI-compatible API endpoints."""
2
+
3
+ from typing import Dict, List, Optional, Union
4
+ from pydantic import BaseModel, Field
5
+ from fastapi import APIRouter, HTTPException, Depends
6
+ import time
7
+ import json
8
+ import asyncio
9
+ from datetime import datetime
10
+
11
+ class ChatMessage(BaseModel):
12
+ """OpenAI-compatible chat message."""
13
+ role: str = Field(..., description="The role of the message author (system/user/assistant)")
14
+ content: str = Field(..., description="The content of the message")
15
+ name: Optional[str] = Field(None, description="The name of the author")
16
+
17
+ class ChatCompletionRequest(BaseModel):
18
+ """OpenAI-compatible chat completion request."""
19
+ model: str = Field(..., description="Model to use")
20
+ messages: List[ChatMessage]
21
+ temperature: Optional[float] = Field(0.7, description="Sampling temperature")
22
+ top_p: Optional[float] = Field(1.0, description="Nucleus sampling parameter")
23
+ n: Optional[int] = Field(1, description="Number of completions")
24
+ stream: Optional[bool] = Field(False, description="Whether to stream responses")
25
+ stop: Optional[Union[str, List[str]]] = Field(None, description="Stop sequences")
26
+ max_tokens: Optional[int] = Field(None, description="Maximum tokens to generate")
27
+ presence_penalty: Optional[float] = Field(0.0, description="Presence penalty")
28
+ frequency_penalty: Optional[float] = Field(0.0, description="Frequency penalty")
29
+ user: Optional[str] = Field(None, description="User identifier")
30
+
31
+ class ChatCompletionResponse(BaseModel):
32
+ """OpenAI-compatible chat completion response."""
33
+ id: str = Field(..., description="Unique identifier for the completion")
34
+ object: str = Field("chat.completion", description="Object type")
35
+ created: int = Field(..., description="Unix timestamp of creation")
36
+ model: str = Field(..., description="Model used")
37
+ choices: List[Dict] = Field(..., description="Completion choices")
38
+ usage: Dict[str, int] = Field(..., description="Token usage statistics")
39
+
40
+ class OpenAICompatibleAPI:
41
+ """OpenAI-compatible API implementation."""
42
+
43
+ def __init__(self, reasoning_engine):
44
+ self.reasoning_engine = reasoning_engine
45
+ self.router = APIRouter()
46
+ self.setup_routes()
47
+
48
+ def setup_routes(self):
49
+ """Setup API routes."""
50
+
51
+ @self.router.post("/v1/chat/completions")
52
+ async def create_chat_completion(request: ChatCompletionRequest) -> ChatCompletionResponse:
53
+ try:
54
+ # Convert chat history to context
55
+ context = self._prepare_context(request.messages)
56
+
57
+ # Get the last user message
58
+ user_message = next(
59
+ (msg.content for msg in reversed(request.messages)
60
+ if msg.role == "user"),
61
+ None
62
+ )
63
+
64
+ if not user_message:
65
+ raise HTTPException(status_code=400, detail="No user message found")
66
+
67
+ # Process with reasoning engine
68
+ result = await self.reasoning_engine.reason(
69
+ query=user_message,
70
+ context={
71
+ "chat_history": context,
72
+ "temperature": request.temperature,
73
+ "top_p": request.top_p,
74
+ "max_tokens": request.max_tokens,
75
+ "stream": request.stream
76
+ }
77
+ )
78
+
79
+ # Format response
80
+ response = {
81
+ "id": f"chatcmpl-{int(time.time()*1000)}",
82
+ "object": "chat.completion",
83
+ "created": int(time.time()),
84
+ "model": request.model,
85
+ "choices": [{
86
+ "index": 0,
87
+ "message": {
88
+ "role": "assistant",
89
+ "content": result.answer
90
+ },
91
+ "finish_reason": "stop"
92
+ }],
93
+ "usage": {
94
+ "prompt_tokens": self._estimate_tokens(user_message),
95
+ "completion_tokens": self._estimate_tokens(result.answer),
96
+ "total_tokens": self._estimate_tokens(user_message) +
97
+ self._estimate_tokens(result.answer)
98
+ }
99
+ }
100
+
101
+ return ChatCompletionResponse(**response)
102
+
103
+ except Exception as e:
104
+ raise HTTPException(status_code=500, detail=str(e))
105
+
106
+ @self.router.get("/v1/models")
107
+ async def list_models():
108
+ """List available models."""
109
+ return {
110
+ "object": "list",
111
+ "data": [
112
+ {
113
+ "id": "venture-gpt-1",
114
+ "object": "model",
115
+ "created": int(time.time()),
116
+ "owned_by": "venture-ai",
117
+ "permission": [],
118
+ "root": "venture-gpt-1",
119
+ "parent": None
120
+ }
121
+ ]
122
+ }
123
+
124
+ def _prepare_context(self, messages: List[ChatMessage]) -> List[Dict]:
125
+ """Convert messages to context format."""
126
+ return [
127
+ {
128
+ "role": msg.role,
129
+ "content": msg.content,
130
+ "name": msg.name,
131
+ "timestamp": datetime.now().isoformat()
132
+ }
133
+ for msg in messages
134
+ ]
135
+
136
+ def _estimate_tokens(self, text: str) -> int:
137
+ """Estimate token count for a text."""
138
+ # Simple estimation: ~4 characters per token
139
+ return len(text) // 4
api/venture_api.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """API endpoints for venture strategies and analysis."""
2
+
3
+ from fastapi import APIRouter, HTTPException, Depends
4
+ from typing import List, Dict, Any, Optional
5
+ from pydantic import BaseModel, Field
6
+ from datetime import datetime
7
+
8
+ from reasoning.venture_strategies import (
9
+ AIStartupStrategy, SaaSVentureStrategy, AutomationVentureStrategy,
10
+ DataVentureStrategy, APIVentureStrategy, MarketplaceVentureStrategy,
11
+ AIInfrastructureStrategy, AIConsultingStrategy, AIProductStrategy,
12
+ FinTechStrategy, HealthTechStrategy, EdTechStrategy,
13
+ BlockchainStrategy, AIMarketplaceStrategy
14
+ )
15
+ from reasoning.market_analysis import MarketAnalyzer
16
+ from reasoning.portfolio_optimization import PortfolioOptimizer
17
+ from reasoning.monetization import MonetizationOptimizer
18
+
19
+ router = APIRouter(prefix="/api/ventures", tags=["ventures"])
20
+
21
+ # Models
22
+ class VentureRequest(BaseModel):
23
+ """Venture analysis request."""
24
+ venture_type: str
25
+ query: str
26
+ context: Dict[str, Any] = Field(default_factory=dict)
27
+
28
+ class MarketRequest(BaseModel):
29
+ """Market analysis request."""
30
+ segment: str
31
+ context: Dict[str, Any] = Field(default_factory=dict)
32
+
33
+ class PortfolioRequest(BaseModel):
34
+ """Portfolio optimization request."""
35
+ ventures: List[str]
36
+ context: Dict[str, Any] = Field(default_factory=dict)
37
+
38
+ class MonetizationRequest(BaseModel):
39
+ """Monetization optimization request."""
40
+ venture_type: str
41
+ context: Dict[str, Any] = Field(default_factory=dict)
42
+
43
+ # Strategy mapping
44
+ VENTURE_STRATEGIES = {
45
+ "ai_startup": AIStartupStrategy(),
46
+ "saas": SaaSVentureStrategy(),
47
+ "automation": AutomationVentureStrategy(),
48
+ "data": DataVentureStrategy(),
49
+ "api": APIVentureStrategy(),
50
+ "marketplace": MarketplaceVentureStrategy(),
51
+ "ai_infrastructure": AIInfrastructureStrategy(),
52
+ "ai_consulting": AIConsultingStrategy(),
53
+ "ai_product": AIProductStrategy(),
54
+ "fintech": FinTechStrategy(),
55
+ "healthtech": HealthTechStrategy(),
56
+ "edtech": EdTechStrategy(),
57
+ "blockchain": BlockchainStrategy(),
58
+ "ai_marketplace": AIMarketplaceStrategy()
59
+ }
60
+
61
+ # Endpoints
62
+ @router.post("/analyze")
63
+ async def analyze_venture(request: VentureRequest):
64
+ """Analyze venture opportunity."""
65
+ try:
66
+ strategy = VENTURE_STRATEGIES.get(request.venture_type)
67
+ if not strategy:
68
+ raise HTTPException(
69
+ status_code=400,
70
+ detail=f"Invalid venture type: {request.venture_type}"
71
+ )
72
+
73
+ result = await strategy.reason(request.query, request.context)
74
+ return {
75
+ "success": True,
76
+ "result": result,
77
+ "timestamp": datetime.now().isoformat()
78
+ }
79
+ except Exception as e:
80
+ raise HTTPException(status_code=500, detail=str(e))
81
+
82
+ @router.post("/market")
83
+ async def analyze_market(request: MarketRequest):
84
+ """Analyze market opportunity."""
85
+ try:
86
+ analyzer = MarketAnalyzer()
87
+ result = await analyzer.analyze_market(request.segment, request.context)
88
+ return {
89
+ "success": True,
90
+ "result": result,
91
+ "timestamp": datetime.now().isoformat()
92
+ }
93
+ except Exception as e:
94
+ raise HTTPException(status_code=500, detail=str(e))
95
+
96
+ @router.post("/portfolio")
97
+ async def optimize_portfolio(request: PortfolioRequest):
98
+ """Optimize venture portfolio."""
99
+ try:
100
+ optimizer = PortfolioOptimizer()
101
+ result = await optimizer.optimize_portfolio(request.ventures, request.context)
102
+ return {
103
+ "success": True,
104
+ "result": result,
105
+ "timestamp": datetime.now().isoformat()
106
+ }
107
+ except Exception as e:
108
+ raise HTTPException(status_code=500, detail=str(e))
109
+
110
+ @router.post("/monetization")
111
+ async def optimize_monetization(request: MonetizationRequest):
112
+ """Optimize venture monetization."""
113
+ try:
114
+ optimizer = MonetizationOptimizer()
115
+ result = await optimizer.optimize_monetization(
116
+ request.venture_type, request.context)
117
+ return {
118
+ "success": True,
119
+ "result": result,
120
+ "timestamp": datetime.now().isoformat()
121
+ }
122
+ except Exception as e:
123
+ raise HTTPException(status_code=500, detail=str(e))
124
+
125
+ @router.get("/strategies")
126
+ async def list_strategies():
127
+ """List available venture strategies."""
128
+ return {
129
+ "success": True,
130
+ "strategies": list(VENTURE_STRATEGIES.keys()),
131
+ "timestamp": datetime.now().isoformat()
132
+ }
133
+
134
+ @router.get("/metrics/{venture_type}")
135
+ async def get_venture_metrics(venture_type: str):
136
+ """Get venture performance metrics."""
137
+ try:
138
+ strategy = VENTURE_STRATEGIES.get(venture_type)
139
+ if not strategy:
140
+ raise HTTPException(
141
+ status_code=400,
142
+ detail=f"Invalid venture type: {venture_type}"
143
+ )
144
+
145
+ metrics = strategy.get_venture_metrics()
146
+ return {
147
+ "success": True,
148
+ "metrics": metrics,
149
+ "timestamp": datetime.now().isoformat()
150
+ }
151
+ except Exception as e:
152
+ raise HTTPException(status_code=500, detail=str(e))
153
+
154
+ @router.get("/insights")
155
+ async def get_market_insights():
156
+ """Get comprehensive market insights."""
157
+ try:
158
+ analyzer = MarketAnalyzer()
159
+ insights = analyzer.get_market_insights()
160
+ return {
161
+ "success": True,
162
+ "insights": insights,
163
+ "timestamp": datetime.now().isoformat()
164
+ }
165
+ except Exception as e:
166
+ raise HTTPException(status_code=500, detail=str(e))
167
+
168
+ @router.get("/portfolio/insights")
169
+ async def get_portfolio_insights():
170
+ """Get comprehensive portfolio insights."""
171
+ try:
172
+ optimizer = PortfolioOptimizer()
173
+ insights = optimizer.get_portfolio_insights()
174
+ return {
175
+ "success": True,
176
+ "insights": insights,
177
+ "timestamp": datetime.now().isoformat()
178
+ }
179
+ except Exception as e:
180
+ raise HTTPException(status_code=500, detail=str(e))
181
+
182
+ @router.get("/monetization/metrics")
183
+ async def get_monetization_metrics():
184
+ """Get comprehensive monetization metrics."""
185
+ try:
186
+ optimizer = MonetizationOptimizer()
187
+ metrics = optimizer.get_monetization_metrics()
188
+ return {
189
+ "success": True,
190
+ "metrics": metrics,
191
+ "timestamp": datetime.now().isoformat()
192
+ }
193
+ except Exception as e:
194
+ raise HTTPException(status_code=500, detail=str(e))
app.py ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Agentic System Interface
3
+ -------------------------------
4
+ Provides a chat interface to interact with the autonomous agent teams:
5
+ - Team A: Coders (App/Software Developers)
6
+ - Team B: Business (Entrepreneurs)
7
+ - Team C: Research (Deep Online Research)
8
+ - Team D: Crypto & Sports Trading
9
+ """
10
+
11
+ import gradio as gr
12
+ from fastapi import FastAPI, HTTPException
13
+ from fastapi.middleware.cors import CORSMiddleware
14
+ import uvicorn
15
+ from typing import Dict, Any, List, Tuple, Optional
16
+ import logging
17
+ from pathlib import Path
18
+ import asyncio
19
+ from datetime import datetime
20
+ import json
21
+ from requests.adapters import HTTPAdapter, Retry
22
+ from urllib3.util.retry import Retry
23
+ import time
24
+
25
+ from agentic_system import AgenticSystem
26
+ from team_management import TeamManager, TeamType, TeamObjective
27
+ from orchestrator import AgentOrchestrator
28
+ from reasoning import UnifiedReasoningEngine as ReasoningEngine
29
+
30
+ # Configure logging
31
+ logging.basicConfig(level=logging.INFO)
32
+ logger = logging.getLogger(__name__)
33
+
34
+ # Configure network settings
35
+ TIMEOUT = int(os.getenv('REQUESTS_TIMEOUT', '30'))
36
+ MAX_RETRIES = 5
37
+ RETRY_BACKOFF = 1
38
+
39
+ def setup_requests_session():
40
+ """Configure requests session with retries."""
41
+ session = requests.Session()
42
+ retry_strategy = Retry(
43
+ total=MAX_RETRIES,
44
+ backoff_factor=RETRY_BACKOFF,
45
+ status_forcelist=[408, 429, 500, 502, 503, 504],
46
+ allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE"]
47
+ )
48
+ adapter = HTTPAdapter(max_retries=retry_strategy)
49
+ session.mount("https://", adapter)
50
+ session.mount("http://", adapter)
51
+ return session
52
+
53
+ def check_network(max_attempts=3):
54
+ """Check network connectivity with retries."""
55
+ session = setup_requests_session()
56
+
57
+ for attempt in range(max_attempts):
58
+ try:
59
+ # Try multiple DNS servers
60
+ for dns in ['8.8.8.8', '8.8.4.4', '1.1.1.1']:
61
+ try:
62
+ socket.gethostbyname('huggingface.co')
63
+ break
64
+ except socket.gaierror:
65
+ continue
66
+
67
+ # Test connection to Hugging Face
68
+ response = session.get('https://huggingface.co/api/health',
69
+ timeout=TIMEOUT)
70
+ if response.status_code == 200:
71
+ return True
72
+
73
+ except (requests.RequestException, socket.gaierror) as e:
74
+ logger.warning(f"Network check attempt {attempt + 1} failed: {e}")
75
+ if attempt < max_attempts - 1:
76
+ time.sleep(RETRY_BACKOFF * (attempt + 1))
77
+ continue
78
+
79
+ logger.error("Network connectivity check failed after all attempts")
80
+ return False
81
+
82
+ class ChatInterface:
83
+ def __init__(self):
84
+ # Check network connectivity
85
+ if not check_network():
86
+ logger.warning("Network connectivity issues detected - continuing with degraded functionality")
87
+
88
+ # Initialize core components with consistent configuration
89
+ config = {
90
+ "min_confidence": 0.7,
91
+ "parallel_threshold": 3,
92
+ "learning_rate": 0.1,
93
+ "strategy_weights": {
94
+ "LOCAL_LLM": 0.8,
95
+ "CHAIN_OF_THOUGHT": 0.6,
96
+ "TREE_OF_THOUGHTS": 0.5,
97
+ "META_LEARNING": 0.4
98
+ }
99
+ }
100
+
101
+ self.orchestrator = AgentOrchestrator(config)
102
+ self.agentic_system = AgenticSystem(config)
103
+ self.team_manager = TeamManager(self.orchestrator)
104
+ self.chat_history = []
105
+ self.active_objectives = {}
106
+
107
+ # Set up network session
108
+ self.session = setup_requests_session()
109
+
110
+ # Initialize teams
111
+ asyncio.run(self.team_manager.initialize_team_agents())
112
+
113
+ async def process_message(
114
+ self,
115
+ message: str,
116
+ history: List[List[str]]
117
+ ) -> Tuple[str, List[List[str]]]:
118
+ """Process incoming chat message."""
119
+ try:
120
+ # Update chat history
121
+ self.chat_history = history
122
+
123
+ # Process message
124
+ response = await self._handle_message(message)
125
+
126
+ # Update history
127
+ if response:
128
+ history.append([message, response])
129
+
130
+ return response, history
131
+
132
+ except Exception as e:
133
+ logger.error(f"Error processing message: {str(e)}")
134
+ error_msg = "I apologize, but I encountered an error. Please try again."
135
+ history.append([message, error_msg])
136
+ return error_msg, history
137
+
138
+ async def _handle_message(self, message: str) -> str:
139
+ """Handle message processing with error recovery."""
140
+ try:
141
+ # Analyze intent
142
+ intent = await self._analyze_intent(message)
143
+ intent_type = self._get_intent_type(intent)
144
+
145
+ # Route to appropriate handler
146
+ if intent_type == "query":
147
+ return await self._handle_query(message)
148
+ elif intent_type == "objective":
149
+ return await self._handle_objective(message)
150
+ elif intent_type == "status":
151
+ return await self._handle_status_request(message)
152
+ else:
153
+ return await self._handle_general_chat(message)
154
+
155
+ except Exception as e:
156
+ logger.error(f"Error in message handling: {str(e)}")
157
+ return "I apologize, but I encountered an error processing your message. Please try again."
158
+
159
+ def _get_intent_type(self, intent) -> str:
160
+ """Safely extract intent type from various result formats."""
161
+ if isinstance(intent, dict):
162
+ return intent.get("type", "general")
163
+ return "general"
164
+
165
+ async def _analyze_intent(self, message: str) -> Dict[str, Any]:
166
+ """Analyze user message intent with error handling."""
167
+ try:
168
+ # Use reasoning engine to analyze intent
169
+ analysis = await self.orchestrator.reasoning_engine.reason(
170
+ query=message,
171
+ context={
172
+ "chat_history": self.chat_history,
173
+ "active_objectives": self.active_objectives
174
+ }
175
+ )
176
+
177
+ return {
178
+ "type": analysis.get("intent_type", "general"),
179
+ "confidence": analysis.get("confidence", 0.5),
180
+ "entities": analysis.get("entities", []),
181
+ "action_required": analysis.get("action_required", False)
182
+ }
183
+ except Exception as e:
184
+ logger.error(f"Error analyzing intent: {str(e)}")
185
+ return {"type": "general", "confidence": 0.5}
186
+
187
+ async def _handle_query(self, message: str) -> str:
188
+ """Handle information queries."""
189
+ try:
190
+ # Get relevant teams for the query
191
+ recommended_teams = await self.team_manager.get_team_recommendations(message)
192
+
193
+ # Get responses from relevant teams
194
+ responses = []
195
+ for team_type in recommended_teams:
196
+ response = await self._get_team_response(team_type, message)
197
+ if response:
198
+ responses.append(response)
199
+
200
+ if not responses:
201
+ return "I apologize, but I couldn't find a relevant answer to your query."
202
+
203
+ # Combine and format responses
204
+ return self._format_team_responses(responses)
205
+
206
+ except Exception as e:
207
+ logger.error(f"Error handling query: {str(e)}")
208
+ return "I apologize, but I encountered an error processing your query. Please try again."
209
+
210
+ async def _handle_objective(self, message: str) -> str:
211
+ """Handle new objective creation."""
212
+ try:
213
+ # Create new objective
214
+ objective_id = await self.team_manager.create_objective(message)
215
+ if not objective_id:
216
+ return "I apologize, but I couldn't create the objective. Please try again."
217
+
218
+ # Format and return response
219
+ return self._format_objective_creation(objective_id)
220
+
221
+ except Exception as e:
222
+ logger.error(f"Error creating objective: {str(e)}")
223
+ return "I apologize, but I encountered an error creating the objective. Please try again."
224
+
225
+ async def _handle_status_request(self, message: str) -> str:
226
+ """Handle status check requests."""
227
+ try:
228
+ # Get system status
229
+ system_status = await self.agentic_system.get_system_status()
230
+
231
+ # Get team status
232
+ team_status = {}
233
+ for team_id, team in self.team_manager.teams.items():
234
+ team_status[team.name] = await self.team_manager.monitor_objective_progress(team_id)
235
+
236
+ # Get objective status
237
+ objective_status = {}
238
+ for obj_id, obj in self.active_objectives.items():
239
+ objective_status[obj_id] = await self.team_manager.monitor_objective_progress(obj_id)
240
+
241
+ return self._format_status_response(system_status, team_status, objective_status)
242
+
243
+ except Exception as e:
244
+ logger.error(f"Error getting status: {str(e)}")
245
+ return "I apologize, but I encountered an error getting the status. Please try again."
246
+
247
+ async def _handle_general_chat(self, message: str) -> str:
248
+ """Handle general chat interactions with error recovery."""
249
+ try:
250
+ # Use reasoning engine for response generation
251
+ response = await self.orchestrator.reasoning_engine.reason(
252
+ query=message,
253
+ context={
254
+ "chat_history": self.chat_history,
255
+ "system_state": await self.agentic_system.get_system_status()
256
+ }
257
+ )
258
+
259
+ if not response or not response.get("response"):
260
+ return "I apologize, but I couldn't generate a meaningful response. Please try again."
261
+
262
+ return response["response"]
263
+
264
+ except Exception as e:
265
+ logger.error(f"Error in general chat: {str(e)}")
266
+ return "I apologize, but I encountered an error processing your message. Please try again."
267
+
268
+ async def _get_team_response(self, team_type: TeamType, query: str) -> Dict[str, Any]:
269
+ """Get response from a specific team."""
270
+ try:
271
+ team = self.team_manager.teams.get(team_type.value)
272
+ if not team:
273
+ return None
274
+
275
+ # Get response from team's agents
276
+ responses = []
277
+ for agent in team.agents:
278
+ response = await agent.process_query(query)
279
+ if response:
280
+ responses.append(response)
281
+
282
+ if not responses:
283
+ return None
284
+
285
+ # Return best response
286
+ return self._combine_agent_responses(responses)
287
+
288
+ except Exception as e:
289
+ logger.error(f"Error getting team response: {str(e)}")
290
+ return None
291
+
292
+ def _combine_agent_responses(self, responses: List[Dict[str, Any]]) -> Dict[str, Any]:
293
+ """Combine multiple agent responses into a coherent response."""
294
+ try:
295
+ # Sort by confidence
296
+ valid_responses = [
297
+ r for r in responses
298
+ if r.get("success", False) and r.get("response")
299
+ ]
300
+
301
+ if not valid_responses:
302
+ return None
303
+
304
+ sorted_responses = sorted(
305
+ valid_responses,
306
+ key=lambda x: x.get("confidence", 0),
307
+ reverse=True
308
+ )
309
+
310
+ # Take the highest confidence response
311
+ return sorted_responses[0]
312
+
313
+ except Exception as e:
314
+ logger.error(f"Error combining responses: {str(e)}")
315
+ return None
316
+
317
+ def _format_team_responses(self, responses: List[Dict[str, Any]]) -> str:
318
+ """Format team responses into a readable message."""
319
+ try:
320
+ if not responses:
321
+ return "No team responses available."
322
+
323
+ formatted = []
324
+ for resp in responses:
325
+ if resp and resp.get("response"):
326
+ team_name = resp.get("team_name", "Unknown Team")
327
+ confidence = resp.get("confidence", 0)
328
+ formatted.append(
329
+ f"\n{team_name} (Confidence: {confidence:.2%}):\n{resp['response']}"
330
+ )
331
+
332
+ if not formatted:
333
+ return "No valid team responses available."
334
+
335
+ return "\n".join(formatted)
336
+
337
+ except Exception as e:
338
+ logger.error(f"Error formatting responses: {str(e)}")
339
+ return "Error formatting team responses."
340
+
341
+ def _format_objective_creation(self, objective_id: str) -> str:
342
+ """Format objective creation response."""
343
+ try:
344
+ obj = self.active_objectives.get(objective_id)
345
+ if not obj:
346
+ return "Objective created but details not available."
347
+
348
+ return "\n".join([
349
+ "New Objective Created:",
350
+ f"Description: {obj['description']}",
351
+ f"Status: {obj['status']}",
352
+ f"Assigned Teams: {', '.join(t.value for t in obj['teams'])}"
353
+ ])
354
+
355
+ except Exception as e:
356
+ logger.error(f"Error formatting objective: {str(e)}")
357
+ return "Error formatting objective details."
358
+
359
+ def _format_status_response(
360
+ self,
361
+ system_status: Dict[str, Any],
362
+ team_status: Dict[str, Any],
363
+ objective_status: Dict[str, Any]
364
+ ) -> str:
365
+ """Format status response."""
366
+ try:
367
+ # Format system status
368
+ status = [
369
+ "System Status:",
370
+ f"- State: {system_status['state']}",
371
+ f"- Active Agents: {system_status['agent_count']}",
372
+ f"- Active Tasks: {system_status['active_tasks']}",
373
+ "\nTeam Status:"
374
+ ]
375
+
376
+ # Add team status
377
+ for team_name, team_info in team_status.items():
378
+ status.extend([
379
+ f"\n{team_name}:",
380
+ f"- Active Agents: {team_info['active_agents']}",
381
+ f"- Completion Rate: {team_info['completion_rate']:.2%}",
382
+ f"- Collaboration Score: {team_info['collaboration_score']:.2f}"
383
+ ])
384
+
385
+ # Add objective status
386
+ if objective_status:
387
+ status.append("\nActive Objectives:")
388
+ for obj_id, obj_info in objective_status.items():
389
+ obj = self.active_objectives[obj_id]
390
+ status.extend([
391
+ f"\n{obj['description']}:",
392
+ f"- Status: {obj['status']}",
393
+ f"- Teams: {', '.join(t.value for t in obj['teams'])}",
394
+ f"- Progress: {sum(t['completion_rate'] for t in obj_info.values())/len(obj_info):.2%}"
395
+ ])
396
+
397
+ return "\n".join(status)
398
+
399
+ except Exception as e:
400
+ logger.error(f"Error formatting status: {str(e)}")
401
+ return "Error formatting status information."
402
+
403
+ class VentureUI:
404
+ def __init__(self, app):
405
+ self.app = app
406
+
407
+ def create_interface(self):
408
+ """Create the Gradio interface."""
409
+ with gr.Blocks(
410
+ theme=gr.themes.Soft(),
411
+ analytics_enabled=False,
412
+ title="Advanced Agentic System"
413
+ ) as interface:
414
+ # Verify Gradio version
415
+ gr.Markdown(f"""
416
+ # Advanced Agentic System Chat Interface v{gr.__version__}
417
+
418
+ Chat with our autonomous agent teams:
419
+ - Team A: Coders (App/Software Developers)
420
+ - Team B: Business (Entrepreneurs)
421
+ - Team C: Research (Deep Online Research)
422
+ - Team D: Crypto & Sports Trading
423
+
424
+ You can:
425
+ 1. Ask questions
426
+ 2. Create new objectives
427
+ 3. Check status of teams and objectives
428
+ 4. Get insights and recommendations
429
+ """)
430
+
431
+ chatbot = gr.Chatbot(
432
+ label="Chat History",
433
+ height=400,
434
+ bubble_full_width=False,
435
+ show_copy_button=True,
436
+ render_markdown=True
437
+ )
438
+
439
+ with gr.Row():
440
+ msg = gr.Textbox(
441
+ label="Message",
442
+ placeholder="Chat with the Agentic System...",
443
+ lines=2,
444
+ scale=9,
445
+ autofocus=True,
446
+ container=True
447
+ )
448
+ submit = gr.Button(
449
+ "Send",
450
+ scale=1,
451
+ variant="primary"
452
+ )
453
+
454
+ with gr.Row():
455
+ clear = gr.ClearButton(
456
+ [msg, chatbot],
457
+ value="Clear Chat",
458
+ variant="secondary",
459
+ scale=1
460
+ )
461
+ retry = gr.Button(
462
+ "Retry Last",
463
+ variant="secondary",
464
+ scale=1
465
+ )
466
+
467
+ async def respond(message, history):
468
+ try:
469
+ # Convert history to the format expected by process_message
470
+ history_list = [[x, y] for x, y in history] if history else []
471
+ response, history_list = await self.app(message, history_list)
472
+
473
+ # Update history
474
+ if history is None:
475
+ history = []
476
+ history.append((message, response))
477
+
478
+ return "", history
479
+ except Exception as e:
480
+ logger.error(f"Error in chat response: {str(e)}")
481
+ error_msg = "I apologize, but I encountered an error. Please try again."
482
+
483
+ if history is None:
484
+ history = []
485
+ history.append((message, error_msg))
486
+
487
+ return "", history
488
+
489
+ async def retry_last(history):
490
+ if not history:
491
+ return history
492
+ last_user_msg = history[-1][0]
493
+ history = history[:-1] # Remove last exchange
494
+ return await respond(last_user_msg, history)
495
+
496
+ msg.submit(
497
+ respond,
498
+ [msg, chatbot],
499
+ [msg, chatbot],
500
+ api_name="chat"
501
+ ).then(
502
+ lambda: gr.update(interactive=True),
503
+ None,
504
+ [msg, submit],
505
+ queue=False
506
+ )
507
+
508
+ submit.click(
509
+ respond,
510
+ [msg, chatbot],
511
+ [msg, chatbot],
512
+ api_name="submit"
513
+ ).then(
514
+ lambda: gr.update(interactive=True),
515
+ None,
516
+ [msg, submit],
517
+ queue=False
518
+ )
519
+
520
+ retry.click(
521
+ retry_last,
522
+ [chatbot],
523
+ [chatbot],
524
+ api_name="retry"
525
+ )
526
+
527
+ # Event handlers for better UX
528
+ msg.change(lambda x: gr.update(interactive=bool(x.strip())), [msg], [submit])
529
+
530
+ # Add example inputs
531
+ gr.Examples(
532
+ examples=[
533
+ "What can Team A (Coders) help me with?",
534
+ "Create a new objective: Analyze market trends",
535
+ "What's the status of all teams?",
536
+ "Give me insights about recent developments"
537
+ ],
538
+ inputs=msg,
539
+ label="Example Queries"
540
+ )
541
+
542
+ return interface
543
+
544
+ def create_chat_interface() -> gr.Blocks:
545
+ """Create Gradio chat interface."""
546
+ chat = ChatInterface()
547
+ ui = VentureUI(chat.process_message)
548
+ return ui.create_interface()
549
+
550
+ # Initialize FastAPI
551
+ app = FastAPI(
552
+ title="Advanced Agentic System",
553
+ description="Venture Strategy Optimizer with OpenAI-compatible API",
554
+ version="1.0.0"
555
+ )
556
+
557
+ # Add CORS middleware
558
+ app.add_middleware(
559
+ CORSMiddleware,
560
+ allow_origins=["*"],
561
+ allow_credentials=True,
562
+ allow_methods=["*"],
563
+ allow_headers=["*"],
564
+ )
565
+
566
+ # Include OpenAI-compatible routes
567
+ from api.openai_compatible import OpenAICompatibleAPI
568
+ reasoning_engine = UnifiedReasoningEngine()
569
+ openai_api = OpenAICompatibleAPI(reasoning_engine)
570
+ app.include_router(openai_api.router, tags=["OpenAI Compatible"])
571
+
572
+ # Original API routes
573
+ @app.get("/api/health")
574
+ async def health_check():
575
+ """Health check endpoint."""
576
+ return {
577
+ "status": "healthy",
578
+ "version": "1.0.0",
579
+ "endpoints": {
580
+ "openai_compatible": "/v1/chat/completions",
581
+ "venture": "/api/venture",
582
+ "ui": "/"
583
+ }
584
+ }
585
+
586
+ @app.post("/api/reason")
587
+ async def reason(query: str, context: Optional[Dict[str, Any]] = None):
588
+ """Reasoning endpoint."""
589
+ try:
590
+ result = await reasoning_engine.reason(query, context or {})
591
+ return result
592
+ except Exception as e:
593
+ logger.error(f"Reasoning error: {e}")
594
+ raise HTTPException(status_code=500, detail=str(e))
595
+
596
+ @app.post("/api/venture/analyze")
597
+ async def analyze_venture(
598
+ venture_type: str,
599
+ description: str,
600
+ metrics: Optional[Dict[str, Any]] = None
601
+ ):
602
+ """Venture analysis endpoint."""
603
+ try:
604
+ result = await VentureAPI(reasoning_engine).analyze_venture(
605
+ venture_type=venture_type,
606
+ description=description,
607
+ metrics=metrics or {}
608
+ )
609
+ return result
610
+ except Exception as e:
611
+ logger.error(f"Analysis error: {e}")
612
+ raise HTTPException(status_code=500, detail=str(e))
613
+
614
+ @app.get("/api/venture/types")
615
+ async def get_venture_types():
616
+ """Get available venture types."""
617
+ return VentureAPI(reasoning_engine).get_venture_types()
618
+
619
+ # Create Gradio interface
620
+ interface = create_chat_interface()
621
+
622
+ # Mount Gradio app to FastAPI
623
+ app = gr.mount_gradio_app(app, interface, path="/")
624
+
625
+ if __name__ == "__main__":
626
+ # Run with uvicorn when called directly
627
+ uvicorn.run(
628
+ "app:app",
629
+ host="0.0.0.0",
630
+ port=7860,
631
+ reload=True,
632
+ workers=4
633
+ )
app.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ title: Advanced Reasoning System
2
+ emoji: 🧠
3
+ colorFrom: indigo
4
+ colorTo: purple
5
+ sdk: gradio
6
+ sdk_version: 4.16.0
7
+ app_file: app.py
8
+ pinned: false
9
+ license: mit
app_space.sh ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Exit on error
4
+ set -e
5
+
6
+ echo "Starting Advanced Agentic System initialization..."
7
+
8
+ # Create necessary directories
9
+ mkdir -p /data/models
10
+ mkdir -p logs
11
+
12
+ # Install system dependencies
13
+ apt-get update && apt-get install -y \
14
+ git \
15
+ git-lfs \
16
+ cmake \
17
+ build-essential \
18
+ pkg-config \
19
+ libcurl4-openssl-dev
20
+
21
+ # Initialize git-lfs
22
+ git lfs install
23
+
24
+ # Upgrade pip and install requirements
25
+ python -m pip install --upgrade pip
26
+ pip install -r requirements.txt
27
+
28
+ # Download and initialize models
29
+ echo "Initializing models..."
30
+ python download_models_space.py
31
+
32
+ # Start the application
33
+ echo "Starting Gradio interface..."
34
+ python app.py
check_space_status.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import HfApi
2
+ import time
3
+ import os
4
+ import requests
5
+
6
+ def check_space_status():
7
+ api = HfApi()
8
+ space_name = "nananie143/Agentic_llm"
9
+
10
+ try:
11
+ # First try direct API request
12
+ response = requests.get(
13
+ f"https://huggingface.co/api/spaces/{space_name}/runtime",
14
+ headers={"Authorization": f"Bearer {os.environ['HUGGINGFACE_TOKEN']}"}
15
+ )
16
+ print(f"\nAPI Response Status: {response.status_code}")
17
+ if response.ok:
18
+ data = response.json()
19
+ print(f"Space Info: {data}")
20
+ return data.get("stage")
21
+
22
+ # Fallback to HF API
23
+ space_info = api.space_info(space_name)
24
+ print(f"\nSpace Info via HF API: {space_info}")
25
+
26
+ if hasattr(space_info, 'runtime'):
27
+ status = space_info.runtime.stage
28
+ print(f"Status: {status}")
29
+ return status
30
+
31
+ print("No status information available")
32
+ return None
33
+
34
+ except Exception as e:
35
+ print(f"Error checking status: {e}")
36
+ return None
37
+
38
+ print("Starting Space status check...")
39
+ print("Will check every 30 seconds until the Space is running...")
40
+
41
+ while True:
42
+ status = check_space_status()
43
+ print(f"Current status: {status}")
44
+
45
+ if status == "RUNNING":
46
+ print("\nSpace is now running! ")
47
+ print(f"Access your Space at: https://huggingface.co/spaces/nananie143/Agentic_llm")
48
+ break
49
+ elif status == "FAILED":
50
+ print("\nSpace build failed! Please check the logs for details.")
51
+ break
52
+ elif status is None:
53
+ print("\nCouldn't determine status. Will try again...")
54
+
55
+ time.sleep(30)
check_versions.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+
3
+ import sys
4
+ import pkg_resources
5
+ import logging
6
+
7
+ logging.basicConfig(level=logging.INFO)
8
+ logger = logging.getLogger(__name__)
9
+
10
+ def check_package_version(package_name):
11
+ """Check installed version of a package."""
12
+ try:
13
+ version = pkg_resources.get_distribution(package_name).version
14
+ logger.info(f"{package_name} version: {version}")
15
+ return version
16
+ except pkg_resources.DistributionNotFound:
17
+ logger.error(f"{package_name} is not installed")
18
+ return None
19
+
20
+ def main():
21
+ """Check versions of key packages."""
22
+ packages = [
23
+ "gradio",
24
+ "torch",
25
+ "transformers",
26
+ "huggingface-hub",
27
+ "pydantic",
28
+ "fastapi",
29
+ "uvicorn"
30
+ ]
31
+
32
+ logger.info("Checking package versions...")
33
+ for package in packages:
34
+ version = check_package_version(package)
35
+ if version is None:
36
+ sys.exit(1)
37
+
38
+ # Verify Gradio version specifically
39
+ gradio_version = check_package_version("gradio")
40
+ if gradio_version:
41
+ major, minor, patch = map(int, gradio_version.split("."))
42
+ if major < 4 or (major == 4 and minor < 44):
43
+ logger.error(f"Gradio version {gradio_version} is too old. Please upgrade to 4.44.1 or later")
44
+ sys.exit(1)
45
+
46
+ logger.info("All package versions verified successfully")
47
+ return 0
48
+
49
+ if __name__ == "__main__":
50
+ sys.exit(main())
cleanup.sh ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Exit on error
4
+ set -e
5
+
6
+ echo "Starting cleanup..."
7
+
8
+ # Define core files to keep
9
+ CORE_FILES=(
10
+ "agentic_system.py"
11
+ "orchestrator.py"
12
+ "team_management.py"
13
+ "meta_learning.py"
14
+ "config.py"
15
+ "space.yml"
16
+ "app.py"
17
+ "startup.sh"
18
+ "check_versions.py"
19
+ "requirements.txt"
20
+ "upload_to_hub.py"
21
+ "app_space.sh"
22
+ ".gitattributes"
23
+ )
24
+
25
+ # Remove backup and temporary files (excluding reasoning directory)
26
+ find . -type f ! -path "./reasoning/*" \( -name "*.bak*" -o -name "*.backup" -o -name "*.temp" -o -name "*.log" \) -delete
27
+
28
+ # Remove cache files (excluding reasoning directory)
29
+ find . -type d ! -path "./reasoning/*" -name "__pycache__" -exec rm -rf {} +
30
+ find . -type f ! -path "./reasoning/*" -name "*.pyc" -delete
31
+
32
+ # Remove sample and simplified files
33
+ rm -f simple_reasoning.py quick_check.py
34
+ rm -rf simple_reasoning/
35
+
36
+ # Remove environment files (after backing up if needed)
37
+ if [ -f .env ]; then
38
+ mv .env .env.backup
39
+ fi
40
+ rm -f .env.example
41
+
42
+ # Remove quantum_learning.py since its functionality exists in reasoning/quantum.py
43
+ rm -f quantum_learning.py
44
+
45
+ echo "Cleanup complete! All files in the reasoning directory have been preserved."
config.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ System Configuration
3
+ ------------------
4
+ Central configuration for the Agentic System including:
5
+ 1. Local Model Settings
6
+ 2. Team Settings
7
+ 3. System Parameters
8
+ 4. Resource Limits
9
+ 5. Free API Configurations
10
+ """
11
+
12
+ import os
13
+ from typing import Dict, Any, Optional
14
+ from pathlib import Path
15
+ import json
16
+ import logging
17
+ from dataclasses import dataclass, field
18
+
19
+ logger = logging.getLogger(__name__)
20
+
21
+ @dataclass
22
+ class Config:
23
+ """Configuration for the Advanced Agentic System."""
24
+
25
+ # Core settings
26
+ min_confidence: float = 0.7
27
+ parallel_threshold: int = 3
28
+ learning_rate: float = 0.1
29
+
30
+ # Model settings
31
+ model_backend: str = field(default_factory=lambda: os.getenv('MODEL_BACKEND', 'huggingface'))
32
+ groq_api_key: Optional[str] = field(default_factory=lambda: os.getenv('GROQ_API_KEY'))
33
+ huggingface_token: Optional[str] = field(default_factory=lambda: os.getenv('HUGGINGFACE_TOKEN'))
34
+
35
+ # API settings
36
+ enable_openai_compatibility: bool = True
37
+ api_rate_limit: int = 100
38
+ api_timeout: int = 30
39
+
40
+ # Resource limits
41
+ max_parallel_requests: int = field(
42
+ default_factory=lambda: int(os.getenv('MAX_PARALLEL_REQUESTS', '10'))
43
+ )
44
+ request_timeout: int = field(
45
+ default_factory=lambda: int(os.getenv('REQUEST_TIMEOUT', '30'))
46
+ )
47
+ batch_size: int = field(
48
+ default_factory=lambda: int(os.getenv('BATCH_SIZE', '4'))
49
+ )
50
+
51
+ # Cache settings
52
+ enable_cache: bool = field(
53
+ default_factory=lambda: os.getenv('CACHE_MODELS', 'false').lower() == 'true'
54
+ )
55
+ cache_dir: str = field(
56
+ default_factory=lambda: os.getenv('SPACE_CACHE_DIR', '/tmp/models')
57
+ )
58
+
59
+ # Strategy weights
60
+ strategy_weights: Dict[str, float] = field(default_factory=lambda: {
61
+ "LOCAL_LLM": 2.0,
62
+ "CHAIN_OF_THOUGHT": 1.5,
63
+ "TREE_OF_THOUGHTS": 1.5,
64
+ "META_LEARNING": 1.5,
65
+ "TASK_DECOMPOSITION": 1.3,
66
+ "RESOURCE_MANAGEMENT": 1.3,
67
+ "CONTEXTUAL_PLANNING": 1.3,
68
+ "ADAPTIVE_EXECUTION": 1.3,
69
+ "FEEDBACK_INTEGRATION": 1.3,
70
+ "BAYESIAN": 1.2,
71
+ "MARKET_ANALYSIS": 1.2,
72
+ "PORTFOLIO_OPTIMIZATION": 1.2,
73
+ "VENTURE": 1.2,
74
+ "MONETIZATION": 1.0,
75
+ "MULTIMODAL": 1.0,
76
+ "NEUROSYMBOLIC": 1.0,
77
+ "SPECIALIZED": 1.0,
78
+ "VENTURE_TYPE": 1.0,
79
+ "RECURSIVE": 1.0,
80
+ "ANALOGICAL": 1.0
81
+ })
82
+
83
+ # Agentic system settings
84
+ agentic_system: Dict[str, Any] = field(default_factory=lambda: {
85
+ "min_confidence": 0.7,
86
+ "parallel_threshold": 3,
87
+ "learning_rate": 0.1,
88
+ "enable_meta_learning": True,
89
+ "enable_self_improvement": True,
90
+ "max_agents": 10,
91
+ "default_agent_config": {
92
+ "learning_rate": 0.1,
93
+ "risk_tolerance": 0.5,
94
+ "max_retries": 3
95
+ }
96
+ })
97
+
98
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
99
+ """Initialize configuration."""
100
+ if config:
101
+ for key, value in config.items():
102
+ if hasattr(self, key):
103
+ setattr(self, key, value)
104
+
105
+ # Validate configuration
106
+ self._validate_config()
107
+
108
+ def _validate_config(self):
109
+ """Validate configuration values."""
110
+ if self.min_confidence < 0 or self.min_confidence > 1:
111
+ raise ValueError("min_confidence must be between 0 and 1")
112
+
113
+ if self.parallel_threshold < 1:
114
+ raise ValueError("parallel_threshold must be at least 1")
115
+
116
+ if self.learning_rate <= 0 or self.learning_rate > 1:
117
+ raise ValueError("learning_rate must be between 0 and 1")
118
+
119
+ if self.model_backend not in ['groq', 'huggingface']:
120
+ raise ValueError("model_backend must be either 'groq' or 'huggingface'")
121
+
122
+ def get(self, key: str, default: Any = None) -> Any:
123
+ """Get configuration value."""
124
+ return getattr(self, key, default)
125
+
126
+ def to_dict(self) -> Dict[str, Any]:
127
+ """Convert configuration to dictionary."""
128
+ return {
129
+ key: getattr(self, key)
130
+ for key in self.__annotations__
131
+ if hasattr(self, key)
132
+ }
133
+
134
+ @classmethod
135
+ def from_file(cls, filepath: str) -> 'Config':
136
+ """Load configuration from file."""
137
+ path = Path(filepath)
138
+ if not path.exists():
139
+ raise FileNotFoundError(f"Configuration file not found: {filepath}")
140
+
141
+ with open(filepath, 'r') as f:
142
+ config = json.load(f)
143
+
144
+ return cls(config)
145
+
146
+ def save(self, filepath: str):
147
+ """Save configuration to file."""
148
+ with open(filepath, 'w') as f:
149
+ json.dump(self.to_dict(), f, indent=2)
150
+
151
+ class SystemConfig:
152
+ """System-wide configuration."""
153
+
154
+ # Base Paths
155
+ BASE_DIR = Path(__file__).parent.absolute()
156
+ CACHE_DIR = BASE_DIR / "cache"
157
+ LOG_DIR = BASE_DIR / "logs"
158
+ DATA_DIR = BASE_DIR / "data"
159
+ MODEL_DIR = BASE_DIR / "models"
160
+
161
+ # System Parameters
162
+ DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() == "true"
163
+ LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
164
+ MAX_WORKERS = int(os.getenv("MAX_WORKERS", "4"))
165
+ ASYNC_TIMEOUT = int(os.getenv("ASYNC_TIMEOUT", "30"))
166
+
167
+ # Local Model Configurations
168
+ MODEL_CONFIG = {
169
+ "quick_coder": {
170
+ "name": "tugstugi/Qwen2.5-Coder-0.5B-QwQ-draft",
171
+ "type": "transformers",
172
+ "description": "Fast code completion and simple tasks",
173
+ "temperature": 0.2,
174
+ "max_tokens": 1000,
175
+ "timeout": 30
176
+ },
177
+ "deep_coder": {
178
+ "name": "YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF",
179
+ "type": "gguf",
180
+ "description": "Complex code generation and refactoring",
181
+ "temperature": 0.3,
182
+ "max_tokens": 2000,
183
+ "timeout": 45
184
+ },
185
+ "text_gen": {
186
+ "name": "Orenguteng/Llama-3-8B-Lexi-Uncensored",
187
+ "type": "transformers",
188
+ "description": "General text generation and reasoning",
189
+ "temperature": 0.7,
190
+ "max_tokens": 1500,
191
+ "timeout": 40
192
+ },
193
+ "workflow": {
194
+ "name": "deepseek-ai/JanusFlow-1.3B",
195
+ "type": "transformers",
196
+ "description": "Task planning and workflow management",
197
+ "temperature": 0.5,
198
+ "max_tokens": 1000,
199
+ "timeout": 30
200
+ }
201
+ }
202
+
203
+ # Team Configurations
204
+ TEAM_CONFIG = {
205
+ "coders": {
206
+ "min_agents": 3,
207
+ "max_agents": 7,
208
+ "capabilities": [
209
+ "full_stack_development",
210
+ "cloud_architecture",
211
+ "ai_ml",
212
+ "blockchain",
213
+ "mobile_development"
214
+ ],
215
+ "resource_limits": {
216
+ "cpu_percent": 80,
217
+ "memory_mb": 4096,
218
+ "gpu_memory_mb": 2048
219
+ }
220
+ },
221
+ "business": {
222
+ "min_agents": 2,
223
+ "max_agents": 5,
224
+ "capabilities": [
225
+ "market_analysis",
226
+ "business_strategy",
227
+ "digital_transformation",
228
+ "startup_innovation",
229
+ "product_management"
230
+ ],
231
+ "resource_limits": {
232
+ "cpu_percent": 60,
233
+ "memory_mb": 2048,
234
+ "api_calls_per_minute": 100
235
+ }
236
+ },
237
+ "research": {
238
+ "min_agents": 2,
239
+ "max_agents": 6,
240
+ "capabilities": [
241
+ "deep_research",
242
+ "data_analysis",
243
+ "trend_forecasting",
244
+ "competitive_analysis",
245
+ "technology_assessment"
246
+ ],
247
+ "resource_limits": {
248
+ "cpu_percent": 70,
249
+ "memory_mb": 3072,
250
+ "api_calls_per_minute": 150
251
+ }
252
+ },
253
+ "traders": {
254
+ "min_agents": 2,
255
+ "max_agents": 5,
256
+ "capabilities": [
257
+ "crypto_trading",
258
+ "sports_betting",
259
+ "risk_management",
260
+ "market_timing",
261
+ "portfolio_optimization"
262
+ ],
263
+ "resource_limits": {
264
+ "cpu_percent": 60,
265
+ "memory_mb": 2048,
266
+ "api_calls_per_minute": 200
267
+ }
268
+ }
269
+ }
270
+
271
+ # Resource Management
272
+ RESOURCE_LIMITS = {
273
+ "total_cpu_percent": 90,
274
+ "total_memory_mb": 8192,
275
+ "total_gpu_memory_mb": 4096,
276
+ "max_api_calls_per_minute": 500,
277
+ "max_concurrent_tasks": 20
278
+ }
279
+
280
+ # Collaboration Settings
281
+ COLLABORATION_CONFIG = {
282
+ "min_confidence_threshold": 0.6,
283
+ "max_team_size": 10,
284
+ "max_concurrent_objectives": 5,
285
+ "objective_timeout_minutes": 60,
286
+ "team_sync_interval_seconds": 30
287
+ }
288
+
289
+ # Error Recovery
290
+ ERROR_RECOVERY = {
291
+ "max_retries": 3,
292
+ "retry_delay_seconds": 5,
293
+ "error_threshold": 0.2,
294
+ "recovery_timeout": 300
295
+ }
296
+
297
+ # Monitoring
298
+ MONITORING = {
299
+ "metrics_interval_seconds": 60,
300
+ "health_check_interval": 30,
301
+ "performance_log_retention_days": 7,
302
+ "alert_threshold": {
303
+ "cpu": 85,
304
+ "memory": 90,
305
+ "error_rate": 0.1
306
+ }
307
+ }
308
+
309
+ # Free API Configurations (No API Keys Required)
310
+ API_CONFIG = {
311
+ "search": {
312
+ "duckduckgo": {
313
+ "base_url": "https://api.duckduckgo.com",
314
+ "rate_limit": 100,
315
+ "requires_auth": False,
316
+ "method": "GET"
317
+ },
318
+ "wikipedia": {
319
+ "base_url": "https://en.wikipedia.org/w/api.php",
320
+ "rate_limit": 200,
321
+ "requires_auth": False,
322
+ "method": "GET"
323
+ },
324
+ "arxiv": {
325
+ "base_url": "http://export.arxiv.org/api/query",
326
+ "rate_limit": 60,
327
+ "requires_auth": False,
328
+ "method": "GET"
329
+ },
330
+ "crossref": {
331
+ "base_url": "https://api.crossref.org/works",
332
+ "rate_limit": 50,
333
+ "requires_auth": False,
334
+ "method": "GET"
335
+ },
336
+ "unpaywall": {
337
+ "base_url": "https://api.unpaywall.org/v2",
338
+ "rate_limit": 100,
339
+ "requires_auth": False,
340
+ "method": "GET"
341
+ }
342
+ },
343
+ "crypto": {
344
+ "coincap": {
345
+ "base_url": "https://api.coincap.io/v2",
346
+ "rate_limit": 200,
347
+ "requires_auth": False,
348
+ "method": "GET",
349
+ "endpoints": {
350
+ "assets": "/assets",
351
+ "rates": "/rates",
352
+ "markets": "/markets"
353
+ }
354
+ },
355
+ "blockchair": {
356
+ "base_url": "https://api.blockchair.com",
357
+ "rate_limit": 30,
358
+ "requires_auth": False,
359
+ "method": "GET"
360
+ }
361
+ },
362
+ "news": {
363
+ "wikinews": {
364
+ "base_url": "https://en.wikinews.org/w/api.php",
365
+ "rate_limit": 200,
366
+ "requires_auth": False,
367
+ "method": "GET"
368
+ },
369
+ "reddit": {
370
+ "base_url": "https://www.reddit.com/r/news/.json",
371
+ "rate_limit": 60,
372
+ "requires_auth": False,
373
+ "method": "GET"
374
+ },
375
+ "hackernews": {
376
+ "base_url": "https://hacker-news.firebaseio.com/v0",
377
+ "rate_limit": 100,
378
+ "requires_auth": False,
379
+ "method": "GET"
380
+ }
381
+ },
382
+ "market_data": {
383
+ "yahoo_finance": {
384
+ "base_url": "https://query1.finance.yahoo.com/v8/finance",
385
+ "rate_limit": 100,
386
+ "requires_auth": False,
387
+ "method": "GET"
388
+ },
389
+ "marketstack_free": {
390
+ "base_url": "https://api.marketstack.com/v1",
391
+ "rate_limit": 100,
392
+ "requires_auth": False,
393
+ "method": "GET"
394
+ }
395
+ },
396
+ "sports": {
397
+ "football_data": {
398
+ "base_url": "https://www.football-data.org/v4",
399
+ "rate_limit": 10,
400
+ "requires_auth": False,
401
+ "method": "GET",
402
+ "free_endpoints": [
403
+ "/competitions",
404
+ "/matches"
405
+ ]
406
+ },
407
+ "nhl": {
408
+ "base_url": "https://statsapi.web.nhl.com/api/v1",
409
+ "rate_limit": 50,
410
+ "requires_auth": False,
411
+ "method": "GET"
412
+ },
413
+ "mlb": {
414
+ "base_url": "https://statsapi.mlb.com/api/v1",
415
+ "rate_limit": 50,
416
+ "requires_auth": False,
417
+ "method": "GET"
418
+ }
419
+ },
420
+ "web_scraping": {
421
+ "web_archive": {
422
+ "base_url": "https://archive.org/wayback/available",
423
+ "rate_limit": 40,
424
+ "requires_auth": False,
425
+ "method": "GET"
426
+ },
427
+ "metahtml": {
428
+ "base_url": "https://html.spec.whatwg.org/multipage",
429
+ "rate_limit": 30,
430
+ "requires_auth": False,
431
+ "method": "GET"
432
+ }
433
+ }
434
+ }
435
+
436
+ @classmethod
437
+ def get_team_config(cls, team_name: str) -> Dict[str, Any]:
438
+ """Get configuration for a specific team."""
439
+ return cls.TEAM_CONFIG.get(team_name, {})
440
+
441
+ @classmethod
442
+ def get_model_config(cls, model_type: str) -> Dict[str, Any]:
443
+ """Get configuration for a specific model type."""
444
+ return cls.MODEL_CONFIG.get(model_type, {})
445
+
446
+ @classmethod
447
+ def get_api_config(cls, api_name: str) -> Dict[str, Any]:
448
+ """Get configuration for a specific API."""
449
+ for category in cls.API_CONFIG.values():
450
+ if api_name in category:
451
+ return category[api_name]
452
+ return {}
download_models.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Script to download and prepare models for HuggingFace Spaces."""
2
+
3
+ import os
4
+ import asyncio
5
+ import logging
6
+ from pathlib import Path
7
+ from huggingface_hub import HfApi, upload_file
8
+ from reasoning.model_manager import ModelManager
9
+
10
+ # Configure logging
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+
14
+ async def download_and_prepare_models():
15
+ """Download all models and prepare for Spaces."""
16
+ try:
17
+ # Initialize model manager
18
+ model_dir = os.path.join(os.getcwd(), "models")
19
+ manager = ModelManager(model_dir)
20
+
21
+ # Create models directory
22
+ os.makedirs(model_dir, exist_ok=True)
23
+
24
+ # Download all models
25
+ logger.info("Starting model downloads...")
26
+ await manager.initialize_all_models()
27
+ logger.info("All models downloaded successfully!")
28
+
29
+ return True
30
+
31
+ except Exception as e:
32
+ logger.error(f"Error downloading models: {e}")
33
+ return False
34
+
35
+ def upload_to_spaces(space_name: str = "agentic-system-models"):
36
+ """Upload models to HuggingFace Spaces."""
37
+ try:
38
+ api = HfApi()
39
+ model_dir = os.path.join(os.getcwd(), "models")
40
+
41
+ # Create .gitattributes for LFS
42
+ gitattributes_path = os.path.join(model_dir, ".gitattributes")
43
+ with open(gitattributes_path, "w") as f:
44
+ f.write("*.gguf filter=lfs diff=lfs merge=lfs -text")
45
+
46
+ # Upload .gitattributes first
47
+ api.upload_file(
48
+ path_or_fileobj=gitattributes_path,
49
+ path_in_repo=".gitattributes",
50
+ repo_id=f"spaces/{space_name}",
51
+ repo_type="space"
52
+ )
53
+
54
+ # Upload each model file
55
+ for model_file in Path(model_dir).glob("*.gguf"):
56
+ logger.info(f"Uploading {model_file.name}...")
57
+ api.upload_file(
58
+ path_or_fileobj=str(model_file),
59
+ path_in_repo=f"models/{model_file.name}",
60
+ repo_id=f"spaces/{space_name}",
61
+ repo_type="space"
62
+ )
63
+
64
+ logger.info("All models uploaded to Spaces successfully!")
65
+ return True
66
+
67
+ except Exception as e:
68
+ logger.error(f"Error uploading to Spaces: {e}")
69
+ return False
70
+
71
+ if __name__ == "__main__":
72
+ # Download models
73
+ asyncio.run(download_and_prepare_models())
74
+
75
+ # Upload to Spaces
76
+ upload_to_spaces()
download_models_space.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Initialize and download models in Hugging Face Spaces environment."""
2
+
3
+ import os
4
+ import asyncio
5
+ import logging
6
+ from huggingface_hub import HfApi
7
+ from reasoning.model_manager import ModelManager
8
+
9
+ # Configure logging
10
+ logging.basicConfig(level=logging.INFO)
11
+ logger = logging.getLogger(__name__)
12
+
13
+ async def initialize_space_models():
14
+ """Download and initialize models in Spaces environment."""
15
+ try:
16
+ # Initialize model manager
17
+ manager = ModelManager()
18
+
19
+ # Download all models
20
+ logger.info("Starting model downloads in Spaces environment...")
21
+ await manager.initialize_all_models()
22
+ logger.info("All models downloaded and initialized successfully!")
23
+
24
+ return True
25
+
26
+ except Exception as e:
27
+ logger.error(f"Error initializing models in Spaces: {e}")
28
+ return False
29
+
30
+ if __name__ == "__main__":
31
+ # Initialize models in Spaces
32
+ asyncio.run(initialize_space_models())
fix_indentation.patch ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --- reasoning.py
2
+ +++ reasoning.py
3
+ @@ -2796,297 +2796,297 @@
4
+ async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
5
+ """Align information across different modalities."""
6
+ try:
7
+ # Extract modality types
8
+ modal_types = list(modalities.keys())
9
+
10
+ # Initialize alignment results
11
+ alignments = []
12
+
13
+ # Process each modality pair
14
+ for i in range(len(modal_types)):
15
+ for j in range(i + 1, len(modal_types)):
16
+ type1, type2 = modal_types[i], modal_types[j]
17
+
18
+ # Get items from each modality
19
+ items1 = modalities[type1]
20
+ items2 = modalities[type2]
21
+
22
+ # Find alignments between items
23
+ for item1 in items1:
24
+ for item2 in items2:
25
+ similarity = self._calculate_similarity(item1, item2)
26
+ if similarity > 0.5: # Threshold for alignment
27
+ alignments.append({
28
+ "type1": type1,
29
+ "type2": type2,
30
+ "item1": item1,
31
+ "item2": item2,
32
+ "similarity": similarity
33
+ })
34
+
35
+ # Sort alignments by similarity
36
+ alignments.sort(key=lambda x: x["similarity"], reverse=True)
37
+
38
+ return alignments
39
+
40
+ except Exception as e:
41
+ logging.error(f"Error in cross-modal alignment: {str(e)}")
42
+ return []
init_space.sh ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+
3
+ # Create necessary directories
4
+ mkdir -p models
5
+ mkdir -p logs
6
+
7
+ # Install system dependencies
8
+ apt-get update && apt-get install -y \
9
+ git \
10
+ git-lfs \
11
+ python3-pip \
12
+ python3-dev \
13
+ build-essential \
14
+ cmake \
15
+ pkg-config \
16
+ libcurl4-openssl-dev
17
+
18
+ # Initialize git-lfs
19
+ git lfs install
20
+
21
+ # Install Python dependencies
22
+ pip install -r requirements.txt
23
+
24
+ # Download models
25
+ python download_models.py
26
+
27
+ # Start the application
28
+ python app.py
main.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Main entry point for the Advanced Agentic System."""
2
+
3
+ import asyncio
4
+ import logging
5
+ from typing import Dict, Any, Optional
6
+ from fastapi import FastAPI
7
+ from fastapi.middleware.cors import CORSMiddleware
8
+ import gradio as gr
9
+ import uvicorn
10
+
11
+ from agentic_system import AgenticSystem
12
+ from reasoning.unified_engine import UnifiedReasoningEngine
13
+ from api.openai_compatible import OpenAICompatibleAPI
14
+ from api.venture_api import VentureAPI
15
+ from ui.venture_ui import VentureUI
16
+ from config import Config
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+ logger = logging.getLogger(__name__)
21
+
22
+ class AgenticSystemApp:
23
+ """Main application class integrating all components."""
24
+
25
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
26
+ self.config = Config(config)
27
+
28
+ # Initialize core components
29
+ self.reasoning_engine = UnifiedReasoningEngine(
30
+ min_confidence=self.config.get('min_confidence', 0.7),
31
+ parallel_threshold=self.config.get('parallel_threshold', 3),
32
+ learning_rate=self.config.get('learning_rate', 0.1)
33
+ )
34
+
35
+ self.agentic_system = AgenticSystem(
36
+ config=self.config.get('agentic_system', {})
37
+ )
38
+
39
+ # Initialize APIs
40
+ self.venture_api = VentureAPI(self.reasoning_engine)
41
+ self.openai_api = OpenAICompatibleAPI(self.reasoning_engine)
42
+
43
+ # Initialize FastAPI
44
+ self.app = FastAPI(
45
+ title="Advanced Agentic System",
46
+ description="Venture Strategy Optimizer with OpenAI-compatible API",
47
+ version="1.0.0"
48
+ )
49
+
50
+ # Setup middleware
51
+ self._setup_middleware()
52
+
53
+ # Setup routes
54
+ self._setup_routes()
55
+
56
+ # Initialize UI
57
+ self.ui = VentureUI(self.venture_api)
58
+ self.interface = self.ui.create_interface()
59
+
60
+ # Mount Gradio app
61
+ self.app = gr.mount_gradio_app(self.app, self.interface, path="/")
62
+
63
+ def _setup_middleware(self):
64
+ """Setup FastAPI middleware."""
65
+ self.app.add_middleware(
66
+ CORSMiddleware,
67
+ allow_origins=["*"],
68
+ allow_credentials=True,
69
+ allow_methods=["*"],
70
+ allow_headers=["*"],
71
+ )
72
+
73
+ def _setup_routes(self):
74
+ """Setup API routes."""
75
+ # Include OpenAI-compatible routes
76
+ self.app.include_router(
77
+ self.openai_api.router,
78
+ tags=["OpenAI Compatible"]
79
+ )
80
+
81
+ # Health check
82
+ @self.app.get("/api/health")
83
+ async def health_check():
84
+ return {
85
+ "status": "healthy",
86
+ "version": "1.0.0",
87
+ "components": {
88
+ "reasoning_engine": "active",
89
+ "agentic_system": "active",
90
+ "openai_api": "active",
91
+ "venture_api": "active"
92
+ }
93
+ }
94
+
95
+ # System status
96
+ @self.app.get("/api/system/status")
97
+ async def system_status():
98
+ return await self.agentic_system.get_system_status()
99
+
100
+ # Reasoning endpoint
101
+ @self.app.post("/api/reason")
102
+ async def reason(query: str, context: Optional[Dict[str, Any]] = None):
103
+ return await self.reasoning_engine.reason(query, context or {})
104
+
105
+ # Venture analysis
106
+ @self.app.post("/api/venture/analyze")
107
+ async def analyze_venture(
108
+ venture_type: str,
109
+ description: str,
110
+ metrics: Optional[Dict[str, Any]] = None
111
+ ):
112
+ return await self.venture_api.analyze_venture(
113
+ venture_type=venture_type,
114
+ description=description,
115
+ metrics=metrics or {}
116
+ )
117
+
118
+ def run(self, host: str = "0.0.0.0", port: int = 7860):
119
+ """Run the application."""
120
+ uvicorn.run(
121
+ self.app,
122
+ host=host,
123
+ port=port,
124
+ workers=4
125
+ )
126
+
127
+ def main():
128
+ """Main entry point."""
129
+ app = AgenticSystemApp()
130
+ app.run()
131
+
132
+ if __name__ == "__main__":
133
+ main()
meta_learning.py ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Meta-Learning System
3
+ ------------------
4
+ Implements meta-learning capabilities for improved learning and adaptation.
5
+ """
6
+
7
+ from typing import Dict, Any, List, Optional, Tuple
8
+ import numpy as np
9
+ from dataclasses import dataclass, field
10
+ import logging
11
+ from datetime import datetime
12
+ from enum import Enum
13
+ import json
14
+ from quantum_learning import QuantumLearningSystem, Pattern, PatternType
15
+
16
+ class LearningStrategy(Enum):
17
+ GRADIENT_BASED = "gradient_based"
18
+ MEMORY_BASED = "memory_based"
19
+ EVOLUTIONARY = "evolutionary"
20
+ REINFORCEMENT = "reinforcement"
21
+ QUANTUM = "quantum"
22
+
23
+ @dataclass
24
+ class MetaParameters:
25
+ """Meta-parameters for learning strategies"""
26
+ learning_rate: float = 0.01
27
+ memory_size: int = 1000
28
+ evolution_rate: float = 0.1
29
+ exploration_rate: float = 0.2
30
+ quantum_interference: float = 0.5
31
+ adaptation_threshold: float = 0.7
32
+
33
+ @dataclass
34
+ class LearningMetrics:
35
+ """Metrics for learning performance"""
36
+ accuracy: float
37
+ convergence_rate: float
38
+ adaptation_speed: float
39
+ resource_usage: float
40
+ timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
41
+
42
+ class MetaLearningSystem:
43
+ """Meta-learning system for optimizing learning strategies"""
44
+
45
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
46
+ self.logger = logging.getLogger(__name__)
47
+ self.config = config or {}
48
+
49
+ # Standard reasoning parameters
50
+ self.min_confidence = self.config.get('min_confidence', 0.7)
51
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
52
+ self.learning_rate = self.config.get('learning_rate', 0.1)
53
+ self.strategy_weights = self.config.get('strategy_weights', {
54
+ "LOCAL_LLM": 0.8,
55
+ "CHAIN_OF_THOUGHT": 0.6,
56
+ "TREE_OF_THOUGHTS": 0.5,
57
+ "META_LEARNING": 0.4
58
+ })
59
+
60
+ # Initialize quantum system with shared config
61
+ quantum_config = {
62
+ 'min_confidence': self.min_confidence,
63
+ 'parallel_threshold': self.parallel_threshold,
64
+ 'learning_rate': self.learning_rate,
65
+ 'strategy_weights': self.strategy_weights,
66
+ 'num_qubits': self.config.get('num_qubits', 8),
67
+ 'entanglement_strength': self.config.get('entanglement_strength', 0.5),
68
+ 'interference_threshold': self.config.get('interference_threshold', 0.3),
69
+ 'tunneling_rate': self.config.get('tunneling_rate', 0.1),
70
+ 'annealing_schedule': self.config.get('annealing_schedule', {
71
+ 'initial_temp': 1.0,
72
+ 'final_temp': 0.01,
73
+ 'steps': 100,
74
+ 'cooling_rate': 0.95
75
+ })
76
+ }
77
+ self.quantum_system = QuantumLearningSystem(quantum_config)
78
+ self.strategies = {}
79
+ self.performance_history = []
80
+ self.meta_parameters = MetaParameters()
81
+
82
+ async def optimize_learning(
83
+ self,
84
+ observation: Dict[str, Any],
85
+ current_strategy: LearningStrategy
86
+ ) -> Tuple[Dict[str, Any], LearningMetrics]:
87
+ """Optimize learning strategy based on observation"""
88
+ try:
89
+ # Process with quantum system
90
+ quantum_result = await self.quantum_system.process_observation(observation)
91
+
92
+ # Evaluate current strategy
93
+ current_metrics = self._evaluate_strategy(
94
+ current_strategy,
95
+ observation,
96
+ quantum_result
97
+ )
98
+
99
+ # Update performance history
100
+ self._update_performance_history(current_metrics)
101
+
102
+ # Adapt meta-parameters
103
+ self._adapt_meta_parameters(current_metrics)
104
+
105
+ # Select optimal strategy
106
+ optimal_strategy = self._select_optimal_strategy(
107
+ observation,
108
+ current_metrics
109
+ )
110
+
111
+ # Apply selected strategy
112
+ result = await self._apply_strategy(
113
+ optimal_strategy,
114
+ observation,
115
+ quantum_result
116
+ )
117
+
118
+ return result, current_metrics
119
+
120
+ except Exception as e:
121
+ self.logger.error(f"Failed to optimize learning: {str(e)}")
122
+ raise
123
+
124
+ def _evaluate_strategy(
125
+ self,
126
+ strategy: LearningStrategy,
127
+ observation: Dict[str, Any],
128
+ quantum_result: Dict[str, Any]
129
+ ) -> LearningMetrics:
130
+ """Evaluate performance of current learning strategy"""
131
+ # Calculate accuracy
132
+ accuracy = self._calculate_accuracy(
133
+ strategy,
134
+ observation,
135
+ quantum_result
136
+ )
137
+
138
+ # Calculate convergence rate
139
+ convergence_rate = self._calculate_convergence_rate(
140
+ strategy,
141
+ self.performance_history
142
+ )
143
+
144
+ # Calculate adaptation speed
145
+ adaptation_speed = self._calculate_adaptation_speed(
146
+ strategy,
147
+ observation
148
+ )
149
+
150
+ # Calculate resource usage
151
+ resource_usage = self._calculate_resource_usage(strategy)
152
+
153
+ return LearningMetrics(
154
+ accuracy=accuracy,
155
+ convergence_rate=convergence_rate,
156
+ adaptation_speed=adaptation_speed,
157
+ resource_usage=resource_usage
158
+ )
159
+
160
+ def _update_performance_history(
161
+ self,
162
+ metrics: LearningMetrics
163
+ ) -> None:
164
+ """Update performance history with new metrics"""
165
+ self.performance_history.append(metrics)
166
+
167
+ # Maintain history size
168
+ if len(self.performance_history) > self.meta_parameters.memory_size:
169
+ self.performance_history.pop(0)
170
+
171
+ def _adapt_meta_parameters(
172
+ self,
173
+ metrics: LearningMetrics
174
+ ) -> None:
175
+ """Adapt meta-parameters based on performance metrics"""
176
+ # Adjust learning rate
177
+ if metrics.convergence_rate < self.meta_parameters.adaptation_threshold:
178
+ self.meta_parameters.learning_rate *= 0.9
179
+ else:
180
+ self.meta_parameters.learning_rate *= 1.1
181
+
182
+ # Adjust memory size
183
+ if metrics.resource_usage > 0.8:
184
+ self.meta_parameters.memory_size = int(
185
+ self.meta_parameters.memory_size * 0.9
186
+ )
187
+ elif metrics.resource_usage < 0.2:
188
+ self.meta_parameters.memory_size = int(
189
+ self.meta_parameters.memory_size * 1.1
190
+ )
191
+
192
+ # Adjust evolution rate
193
+ if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold:
194
+ self.meta_parameters.evolution_rate *= 1.1
195
+ else:
196
+ self.meta_parameters.evolution_rate *= 0.9
197
+
198
+ # Adjust exploration rate
199
+ if metrics.accuracy < self.meta_parameters.adaptation_threshold:
200
+ self.meta_parameters.exploration_rate *= 1.1
201
+ else:
202
+ self.meta_parameters.exploration_rate *= 0.9
203
+
204
+ # Adjust quantum interference
205
+ if metrics.accuracy > 0.8:
206
+ self.meta_parameters.quantum_interference *= 1.1
207
+ else:
208
+ self.meta_parameters.quantum_interference *= 0.9
209
+
210
+ # Ensure parameters stay within reasonable bounds
211
+ self._normalize_parameters()
212
+
213
+ def _normalize_parameters(self) -> None:
214
+ """Normalize meta-parameters to stay within bounds"""
215
+ self.meta_parameters.learning_rate = np.clip(
216
+ self.meta_parameters.learning_rate,
217
+ 0.001,
218
+ 0.1
219
+ )
220
+ self.meta_parameters.memory_size = np.clip(
221
+ self.meta_parameters.memory_size,
222
+ 100,
223
+ 10000
224
+ )
225
+ self.meta_parameters.evolution_rate = np.clip(
226
+ self.meta_parameters.evolution_rate,
227
+ 0.01,
228
+ 0.5
229
+ )
230
+ self.meta_parameters.exploration_rate = np.clip(
231
+ self.meta_parameters.exploration_rate,
232
+ 0.1,
233
+ 0.9
234
+ )
235
+ self.meta_parameters.quantum_interference = np.clip(
236
+ self.meta_parameters.quantum_interference,
237
+ 0.1,
238
+ 0.9
239
+ )
240
+
241
+ def _select_optimal_strategy(
242
+ self,
243
+ observation: Dict[str, Any],
244
+ metrics: LearningMetrics
245
+ ) -> LearningStrategy:
246
+ """Select optimal learning strategy"""
247
+ strategies = list(LearningStrategy)
248
+ scores = []
249
+
250
+ for strategy in strategies:
251
+ # Calculate strategy score
252
+ score = self._calculate_strategy_score(
253
+ strategy,
254
+ observation,
255
+ metrics
256
+ )
257
+ scores.append((strategy, score))
258
+
259
+ # Select strategy with highest score
260
+ optimal_strategy = max(scores, key=lambda x: x[1])[0]
261
+
262
+ return optimal_strategy
263
+
264
+ async def _apply_strategy(
265
+ self,
266
+ strategy: LearningStrategy,
267
+ observation: Dict[str, Any],
268
+ quantum_result: Dict[str, Any]
269
+ ) -> Dict[str, Any]:
270
+ """Apply selected learning strategy"""
271
+ if strategy == LearningStrategy.GRADIENT_BASED:
272
+ return await self._apply_gradient_strategy(
273
+ observation,
274
+ quantum_result
275
+ )
276
+ elif strategy == LearningStrategy.MEMORY_BASED:
277
+ return await self._apply_memory_strategy(
278
+ observation,
279
+ quantum_result
280
+ )
281
+ elif strategy == LearningStrategy.EVOLUTIONARY:
282
+ return await self._apply_evolutionary_strategy(
283
+ observation,
284
+ quantum_result
285
+ )
286
+ elif strategy == LearningStrategy.REINFORCEMENT:
287
+ return await self._apply_reinforcement_strategy(
288
+ observation,
289
+ quantum_result
290
+ )
291
+ else: # QUANTUM
292
+ return quantum_result
293
+
294
+ def _calculate_accuracy(
295
+ self,
296
+ strategy: LearningStrategy,
297
+ observation: Dict[str, Any],
298
+ quantum_result: Dict[str, Any]
299
+ ) -> float:
300
+ """Calculate accuracy of learning strategy"""
301
+ if "patterns" not in quantum_result:
302
+ return 0.0
303
+
304
+ patterns = quantum_result["patterns"]
305
+ if not patterns:
306
+ return 0.0
307
+
308
+ # Calculate pattern confidence
309
+ confidence_sum = sum(pattern.confidence for pattern in patterns)
310
+ return confidence_sum / len(patterns)
311
+
312
+ def _calculate_convergence_rate(
313
+ self,
314
+ strategy: LearningStrategy,
315
+ history: List[LearningMetrics]
316
+ ) -> float:
317
+ """Calculate convergence rate of learning strategy"""
318
+ if not history:
319
+ return 0.0
320
+
321
+ # Calculate rate of improvement
322
+ accuracies = [metrics.accuracy for metrics in history[-10:]]
323
+ if len(accuracies) < 2:
324
+ return 0.0
325
+
326
+ differences = np.diff(accuracies)
327
+ return float(np.mean(differences > 0))
328
+
329
+ def _calculate_adaptation_speed(
330
+ self,
331
+ strategy: LearningStrategy,
332
+ observation: Dict[str, Any]
333
+ ) -> float:
334
+ """Calculate adaptation speed of learning strategy"""
335
+ if not self.performance_history:
336
+ return 0.0
337
+
338
+ # Calculate time to reach adaptation threshold
339
+ threshold = self.meta_parameters.adaptation_threshold
340
+ for i, metrics in enumerate(self.performance_history):
341
+ if metrics.accuracy >= threshold:
342
+ return 1.0 / (i + 1)
343
+
344
+ return 0.0
345
+
346
+ def _calculate_resource_usage(
347
+ self,
348
+ strategy: LearningStrategy
349
+ ) -> float:
350
+ """Calculate resource usage of learning strategy"""
351
+ # Simulate resource usage based on strategy
352
+ base_usage = {
353
+ LearningStrategy.GRADIENT_BASED: 0.4,
354
+ LearningStrategy.MEMORY_BASED: 0.6,
355
+ LearningStrategy.EVOLUTIONARY: 0.7,
356
+ LearningStrategy.REINFORCEMENT: 0.5,
357
+ LearningStrategy.QUANTUM: 0.8
358
+ }
359
+
360
+ return base_usage[strategy]
361
+
362
+ def _calculate_strategy_score(
363
+ self,
364
+ strategy: LearningStrategy,
365
+ observation: Dict[str, Any],
366
+ metrics: LearningMetrics
367
+ ) -> float:
368
+ """Calculate score for learning strategy"""
369
+ # Weight different factors
370
+ weights = {
371
+ "accuracy": 0.4,
372
+ "convergence": 0.2,
373
+ "adaptation": 0.2,
374
+ "resources": 0.2
375
+ }
376
+
377
+ score = (
378
+ weights["accuracy"] * metrics.accuracy +
379
+ weights["convergence"] * metrics.convergence_rate +
380
+ weights["adaptation"] * metrics.adaptation_speed +
381
+ weights["resources"] * (1 - metrics.resource_usage)
382
+ )
383
+
384
+ # Add exploration bonus
385
+ if np.random.random() < self.meta_parameters.exploration_rate:
386
+ score += 0.1
387
+
388
+ return score
389
+
390
+ async def _apply_gradient_strategy(
391
+ self,
392
+ observation: Dict[str, Any],
393
+ quantum_result: Dict[str, Any]
394
+ ) -> Dict[str, Any]:
395
+ """Apply gradient-based learning strategy"""
396
+ return {
397
+ "result": "gradient_optimization",
398
+ "quantum_enhanced": quantum_result,
399
+ "meta_parameters": self.meta_parameters.__dict__
400
+ }
401
+
402
+ async def _apply_memory_strategy(
403
+ self,
404
+ observation: Dict[str, Any],
405
+ quantum_result: Dict[str, Any]
406
+ ) -> Dict[str, Any]:
407
+ """Apply memory-based learning strategy"""
408
+ return {
409
+ "result": "memory_optimization",
410
+ "quantum_enhanced": quantum_result,
411
+ "meta_parameters": self.meta_parameters.__dict__
412
+ }
413
+
414
+ async def _apply_evolutionary_strategy(
415
+ self,
416
+ observation: Dict[str, Any],
417
+ quantum_result: Dict[str, Any]
418
+ ) -> Dict[str, Any]:
419
+ """Apply evolutionary learning strategy"""
420
+ return {
421
+ "result": "evolutionary_optimization",
422
+ "quantum_enhanced": quantum_result,
423
+ "meta_parameters": self.meta_parameters.__dict__
424
+ }
425
+
426
+ async def _apply_reinforcement_strategy(
427
+ self,
428
+ observation: Dict[str, Any],
429
+ quantum_result: Dict[str, Any]
430
+ ) -> Dict[str, Any]:
431
+ """Apply reinforcement learning strategy"""
432
+ return {
433
+ "result": "reinforcement_optimization",
434
+ "quantum_enhanced": quantum_result,
435
+ "meta_parameters": self.meta_parameters.__dict__
436
+ }
multimodal_reasoning.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Multi-Modal Reasoning Implementation
3
+ ----------------------------------
4
+ Implements reasoning across different types of information.
5
+ """
6
+
7
+ import logging
8
+ from typing import Dict, Any, List, Optional
9
+ from datetime import datetime
10
+ import json
11
+ import numpy as np
12
+ from .reasoning import ReasoningStrategy
13
+
14
+ class MultiModalReasoning(ReasoningStrategy):
15
+ """Implements multi-modal reasoning across different types of information."""
16
+
17
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
18
+ """Initialize multi-modal reasoning."""
19
+ super().__init__()
20
+ self.config = config or {}
21
+
22
+ # Standard reasoning parameters
23
+ self.min_confidence = self.config.get('min_confidence', 0.7)
24
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
25
+ self.learning_rate = self.config.get('learning_rate', 0.1)
26
+ self.strategy_weights = self.config.get('strategy_weights', {
27
+ "LOCAL_LLM": 0.8,
28
+ "CHAIN_OF_THOUGHT": 0.6,
29
+ "TREE_OF_THOUGHTS": 0.5,
30
+ "META_LEARNING": 0.4
31
+ })
32
+
33
+ # Multi-modal specific parameters
34
+ self.modality_weights = self.config.get('modality_weights', {
35
+ 'text': 0.8,
36
+ 'image': 0.7,
37
+ 'audio': 0.6,
38
+ 'video': 0.5,
39
+ 'structured': 0.7
40
+ })
41
+ self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6)
42
+ self.integration_steps = self.config.get('integration_steps', 3)
43
+ self.alignment_method = self.config.get('alignment_method', 'attention')
44
+
45
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
46
+ try:
47
+ # Process different modalities
48
+ modalities = await self._process_modalities(query, context)
49
+
50
+ # Align across modalities
51
+ alignment = await self._cross_modal_alignment(modalities, context)
52
+
53
+ # Integrated analysis
54
+ integration = await self._integrated_analysis(alignment, context)
55
+
56
+ # Generate final response
57
+ response = await self._generate_response(integration, context)
58
+
59
+ return {
60
+ "success": True,
61
+ "answer": response["conclusion"],
62
+ "modalities": modalities,
63
+ "alignment": alignment,
64
+ "integration": integration,
65
+ "confidence": response["confidence"]
66
+ }
67
+ except Exception as e:
68
+ logging.error(f"Error in multi-modal reasoning: {str(e)}")
69
+ return {"success": False, "error": str(e)}
70
+
71
+ async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
72
+ """Process query across different modalities."""
73
+ prompt = f"""
74
+ Process query across modalities:
75
+ Query: {query}
76
+ Context: {json.dumps(context)}
77
+
78
+ For each modality extract:
79
+ 1. [Type]: Modality type
80
+ 2. [Content]: Relevant content
81
+ 3. [Features]: Key features
82
+ 4. [Quality]: Content quality
83
+
84
+ Format as:
85
+ [M1]
86
+ Type: ...
87
+ Content: ...
88
+ Features: ...
89
+ Quality: ...
90
+ """
91
+
92
+ response = await context["groq_api"].predict(prompt)
93
+ return self._parse_modalities(response["answer"])
94
+
95
+ async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
96
+ """Align information across different modalities."""
97
+ try:
98
+ # Extract modality types
99
+ modal_types = list(modalities.keys())
100
+
101
+ # Initialize alignment results
102
+ alignments = []
103
+
104
+ # Process each modality pair
105
+ for i in range(len(modal_types)):
106
+ for j in range(i + 1, len(modal_types)):
107
+ type1, type2 = modal_types[i], modal_types[j]
108
+
109
+ # Get items from each modality
110
+ items1 = modalities[type1]
111
+ items2 = modalities[type2]
112
+
113
+ # Find alignments between items
114
+ for item1 in items1:
115
+ for item2 in items2:
116
+ similarity = self._calculate_similarity(item1, item2)
117
+ if similarity > self.cross_modal_threshold: # Threshold for alignment
118
+ alignments.append({
119
+ "type1": type1,
120
+ "type2": type2,
121
+ "item1": item1,
122
+ "item2": item2,
123
+ "similarity": similarity
124
+ })
125
+
126
+ # Sort alignments by similarity
127
+ alignments.sort(key=lambda x: x["similarity"], reverse=True)
128
+
129
+ return alignments
130
+
131
+ except Exception as e:
132
+ logging.error(f"Error in cross-modal alignment: {str(e)}")
133
+ return []
134
+
135
+ def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
136
+ """Calculate similarity between two items from different modalities."""
137
+ try:
138
+ # Extract content from items
139
+ content1 = str(item1.get("content", ""))
140
+ content2 = str(item2.get("content", ""))
141
+
142
+ # Calculate basic similarity (can be enhanced with more sophisticated methods)
143
+ common_words = set(content1.lower().split()) & set(content2.lower().split())
144
+ total_words = set(content1.lower().split()) | set(content2.lower().split())
145
+
146
+ if not total_words:
147
+ return 0.0
148
+
149
+ return len(common_words) / len(total_words)
150
+
151
+ except Exception as e:
152
+ logging.error(f"Error calculating similarity: {str(e)}")
153
+ return 0.0
154
+
155
+ async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
156
+ prompt = f"""
157
+ Perform integrated multi-modal analysis:
158
+ Alignment: {json.dumps(alignment)}
159
+ Context: {json.dumps(context)}
160
+
161
+ For each insight:
162
+ 1. [Insight]: Key finding
163
+ 2. [Sources]: Contributing modalities
164
+ 3. [Support]: Supporting evidence
165
+ 4. [Confidence]: Confidence level
166
+
167
+ Format as:
168
+ [I1]
169
+ Insight: ...
170
+ Sources: ...
171
+ Support: ...
172
+ Confidence: ...
173
+ """
174
+
175
+ response = await context["groq_api"].predict(prompt)
176
+ return self._parse_integration(response["answer"])
177
+
178
+ async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
179
+ prompt = f"""
180
+ Generate unified multi-modal response:
181
+ Integration: {json.dumps(integration)}
182
+ Context: {json.dumps(context)}
183
+
184
+ Provide:
185
+ 1. Main conclusion
186
+ 2. Modal contributions
187
+ 3. Integration benefits
188
+ 4. Confidence level (0-1)
189
+ """
190
+
191
+ response = await context["groq_api"].predict(prompt)
192
+ return self._parse_response(response["answer"])
193
+
194
+ def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
195
+ """Parse modalities from response."""
196
+ modalities = {}
197
+ current_modality = None
198
+
199
+ for line in response.split('\n'):
200
+ line = line.strip()
201
+ if not line:
202
+ continue
203
+
204
+ if line.startswith('[M'):
205
+ if current_modality:
206
+ if current_modality["type"] not in modalities:
207
+ modalities[current_modality["type"]] = []
208
+ modalities[current_modality["type"]].append(current_modality)
209
+ current_modality = {
210
+ "type": "",
211
+ "content": "",
212
+ "features": "",
213
+ "quality": ""
214
+ }
215
+ elif current_modality:
216
+ if line.startswith('Type:'):
217
+ current_modality["type"] = line[5:].strip()
218
+ elif line.startswith('Content:'):
219
+ current_modality["content"] = line[8:].strip()
220
+ elif line.startswith('Features:'):
221
+ current_modality["features"] = line[9:].strip()
222
+ elif line.startswith('Quality:'):
223
+ current_modality["quality"] = line[8:].strip()
224
+
225
+ if current_modality:
226
+ if current_modality["type"] not in modalities:
227
+ modalities[current_modality["type"]] = []
228
+ modalities[current_modality["type"]].append(current_modality)
229
+
230
+ return modalities
231
+
232
+ def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
233
+ """Parse integration from response."""
234
+ integration = []
235
+ current_insight = None
236
+
237
+ for line in response.split('\n'):
238
+ line = line.strip()
239
+ if not line:
240
+ continue
241
+
242
+ if line.startswith('[I'):
243
+ if current_insight:
244
+ integration.append(current_insight)
245
+ current_insight = {
246
+ "insight": "",
247
+ "sources": "",
248
+ "support": "",
249
+ "confidence": 0.0
250
+ }
251
+ elif current_insight:
252
+ if line.startswith('Insight:'):
253
+ current_insight["insight"] = line[8:].strip()
254
+ elif line.startswith('Sources:'):
255
+ current_insight["sources"] = line[8:].strip()
256
+ elif line.startswith('Support:'):
257
+ current_insight["support"] = line[8:].strip()
258
+ elif line.startswith('Confidence:'):
259
+ try:
260
+ current_insight["confidence"] = float(line[11:].strip())
261
+ except:
262
+ pass
263
+
264
+ if current_insight:
265
+ integration.append(current_insight)
266
+
267
+ return integration
268
+
269
+ def _parse_response(self, response: str) -> Dict[str, Any]:
270
+ """Parse response from response."""
271
+ response_dict = {
272
+ "conclusion": "",
273
+ "modal_contributions": [],
274
+ "integration_benefits": [],
275
+ "confidence": 0.0
276
+ }
277
+
278
+ mode = None
279
+ for line in response.split('\n'):
280
+ line = line.strip()
281
+ if not line:
282
+ continue
283
+
284
+ if line.startswith('Conclusion:'):
285
+ response_dict["conclusion"] = line[11:].strip()
286
+ elif line.startswith('Modal Contributions:'):
287
+ mode = "modal"
288
+ elif line.startswith('Integration Benefits:'):
289
+ mode = "integration"
290
+ elif line.startswith('Confidence:'):
291
+ try:
292
+ response_dict["confidence"] = float(line[11:].strip())
293
+ except:
294
+ response_dict["confidence"] = 0.5
295
+ mode = None
296
+ elif mode == "modal" and line.startswith('- '):
297
+ response_dict["modal_contributions"].append(line[2:].strip())
298
+ elif mode == "integration" and line.startswith('- '):
299
+ response_dict["integration_benefits"].append(line[2:].strip())
300
+
301
+ return response_dict
orchestrator.py ADDED
@@ -0,0 +1,628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Agentic Orchestrator for Advanced AI System
3
+ -----------------------------------------
4
+ Manages and coordinates multiple agentic components:
5
+ 1. Task Planning & Decomposition
6
+ 2. Resource Management
7
+ 3. Agent Communication
8
+ 4. State Management
9
+ 5. Error Recovery
10
+ 6. Performance Monitoring
11
+ """
12
+
13
+ import logging
14
+ from typing import Dict, Any, List, Optional, Union, TypeVar, Generic
15
+ from dataclasses import dataclass, field
16
+ from enum import Enum
17
+ import json
18
+ import asyncio
19
+ from datetime import datetime
20
+ import uuid
21
+ from concurrent.futures import ThreadPoolExecutor
22
+ import networkx as nx
23
+ from collections import defaultdict
24
+ import numpy as np
25
+
26
+ from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
27
+ from reasoning.meta_learning import MetaLearningStrategy
28
+
29
+ T = TypeVar('T')
30
+
31
+ class AgentRole(Enum):
32
+ """Different roles an agent can take."""
33
+ PLANNER = "planner"
34
+ EXECUTOR = "executor"
35
+ MONITOR = "monitor"
36
+ COORDINATOR = "coordinator"
37
+ LEARNER = "learner"
38
+
39
+ class AgentState(Enum):
40
+ """Possible states of an agent."""
41
+ IDLE = "idle"
42
+ BUSY = "busy"
43
+ ERROR = "error"
44
+ LEARNING = "learning"
45
+ TERMINATED = "terminated"
46
+
47
+ class TaskPriority(Enum):
48
+ """Task priority levels."""
49
+ LOW = 0
50
+ MEDIUM = 1
51
+ HIGH = 2
52
+ CRITICAL = 3
53
+
54
+ @dataclass
55
+ class AgentMetadata:
56
+ """Metadata about an agent."""
57
+ id: str
58
+ role: AgentRole
59
+ capabilities: List[str]
60
+ state: AgentState
61
+ load: float
62
+ last_active: datetime
63
+ metrics: Dict[str, float]
64
+
65
+ @dataclass
66
+ class Task:
67
+ """Represents a task in the system."""
68
+ id: str
69
+ description: str
70
+ priority: TaskPriority
71
+ dependencies: List[str]
72
+ assigned_to: Optional[str]
73
+ state: str
74
+ created_at: datetime
75
+ deadline: Optional[datetime]
76
+ metadata: Dict[str, Any]
77
+
78
+ class AgentOrchestrator:
79
+ """Advanced orchestrator for managing agentic system."""
80
+
81
+ def __init__(self, config: Dict[str, Any] = None):
82
+ self.config = config or {}
83
+
84
+ # Core components
85
+ self.agents: Dict[str, AgentMetadata] = {}
86
+ self.tasks: Dict[str, Task] = {}
87
+ self.task_graph = nx.DiGraph()
88
+
89
+ # State management
90
+ self.state_history: List[Dict[str, Any]] = []
91
+ self.global_state: Dict[str, Any] = {}
92
+
93
+ # Resource management
94
+ self.resource_pool: Dict[str, Any] = {}
95
+ self.resource_locks: Dict[str, asyncio.Lock] = {}
96
+
97
+ # Communication
98
+ self.message_queue = asyncio.Queue()
99
+ self.event_bus = asyncio.Queue()
100
+
101
+ # Performance monitoring
102
+ self.metrics = defaultdict(list)
103
+ self.performance_log = []
104
+
105
+ # Error handling
106
+ self.error_handlers: Dict[str, callable] = {}
107
+ self.recovery_strategies: Dict[str, callable] = {}
108
+
109
+ # Async support
110
+ self.executor = ThreadPoolExecutor(max_workers=4)
111
+ self.lock = asyncio.Lock()
112
+
113
+ # Logging
114
+ self.logger = logging.getLogger(__name__)
115
+
116
+ # Initialize components
117
+ self._init_components()
118
+
119
+ def _init_components(self):
120
+ """Initialize orchestrator components."""
121
+ # Initialize reasoning engine
122
+ self.reasoning_engine = ReasoningEngine(
123
+ min_confidence=0.7,
124
+ parallel_threshold=5,
125
+ learning_rate=0.1,
126
+ strategy_weights={
127
+ "LOCAL_LLM": 2.0,
128
+ "CHAIN_OF_THOUGHT": 1.0,
129
+ "TREE_OF_THOUGHTS": 1.0,
130
+ "META_LEARNING": 1.5
131
+ }
132
+ )
133
+
134
+ # Initialize meta-learning
135
+ self.meta_learning = MetaLearningStrategy()
136
+
137
+ # Register basic error handlers
138
+ self._register_error_handlers()
139
+
140
+ async def register_agent(
141
+ self,
142
+ role: AgentRole,
143
+ capabilities: List[str]
144
+ ) -> str:
145
+ """Register a new agent with the orchestrator."""
146
+ agent_id = str(uuid.uuid4())
147
+
148
+ agent = AgentMetadata(
149
+ id=agent_id,
150
+ role=role,
151
+ capabilities=capabilities,
152
+ state=AgentState.IDLE,
153
+ load=0.0,
154
+ last_active=datetime.now(),
155
+ metrics={}
156
+ )
157
+
158
+ async with self.lock:
159
+ self.agents[agent_id] = agent
160
+ self.logger.info(f"Registered new agent: {agent_id} with role {role}")
161
+
162
+ return agent_id
163
+
164
+ async def submit_task(
165
+ self,
166
+ description: str,
167
+ priority: TaskPriority = TaskPriority.MEDIUM,
168
+ dependencies: List[str] = None,
169
+ deadline: Optional[datetime] = None,
170
+ metadata: Dict[str, Any] = None
171
+ ) -> str:
172
+ """Submit a new task to the orchestrator."""
173
+ task_id = str(uuid.uuid4())
174
+
175
+ task = Task(
176
+ id=task_id,
177
+ description=description,
178
+ priority=priority,
179
+ dependencies=dependencies or [],
180
+ assigned_to=None,
181
+ state="pending",
182
+ created_at=datetime.now(),
183
+ deadline=deadline,
184
+ metadata=metadata or {}
185
+ )
186
+
187
+ async with self.lock:
188
+ self.tasks[task_id] = task
189
+ self._update_task_graph(task)
190
+
191
+ # Trigger task planning
192
+ await self._plan_task_execution(task_id)
193
+
194
+ return task_id
195
+
196
+ async def _plan_task_execution(self, task_id: str) -> None:
197
+ """Plan the execution of a task."""
198
+ task = self.tasks[task_id]
199
+
200
+ # Check dependencies
201
+ if not await self._check_dependencies(task):
202
+ self.logger.info(f"Task {task_id} waiting for dependencies")
203
+ return
204
+
205
+ # Find suitable agent
206
+ agent_id = await self._find_suitable_agent(task)
207
+ if not agent_id:
208
+ self.logger.warning(f"No suitable agent found for task {task_id}")
209
+ return
210
+
211
+ # Assign task
212
+ await self._assign_task(task_id, agent_id)
213
+
214
+ async def _check_dependencies(self, task: Task) -> bool:
215
+ """Check if all task dependencies are satisfied."""
216
+ for dep_id in task.dependencies:
217
+ if dep_id not in self.tasks:
218
+ return False
219
+ if self.tasks[dep_id].state != "completed":
220
+ return False
221
+ return True
222
+
223
+ async def _find_suitable_agent(self, task: Task) -> Optional[str]:
224
+ """Find the most suitable agent for a task."""
225
+ best_agent = None
226
+ best_score = float('-inf')
227
+
228
+ for agent_id, agent in self.agents.items():
229
+ if agent.state != AgentState.IDLE:
230
+ continue
231
+
232
+ score = await self._calculate_agent_suitability(agent, task)
233
+ if score > best_score:
234
+ best_score = score
235
+ best_agent = agent_id
236
+
237
+ return best_agent
238
+
239
+ async def _calculate_agent_suitability(
240
+ self,
241
+ agent: AgentMetadata,
242
+ task: Task
243
+ ) -> float:
244
+ """Calculate how suitable an agent is for a task."""
245
+ # Base score on capabilities match
246
+ capability_score = sum(
247
+ 1 for cap in task.metadata.get("required_capabilities", [])
248
+ if cap in agent.capabilities
249
+ )
250
+
251
+ # Consider agent load
252
+ load_score = 1 - agent.load
253
+
254
+ # Consider agent's recent performance
255
+ performance_score = sum(agent.metrics.values()) / len(agent.metrics) if agent.metrics else 0.5
256
+
257
+ # Weighted combination
258
+ weights = self.config.get("agent_selection_weights", {
259
+ "capabilities": 0.5,
260
+ "load": 0.3,
261
+ "performance": 0.2
262
+ })
263
+
264
+ return (
265
+ weights["capabilities"] * capability_score +
266
+ weights["load"] * load_score +
267
+ weights["performance"] * performance_score
268
+ )
269
+
270
+ async def _assign_task(self, task_id: str, agent_id: str) -> None:
271
+ """Assign a task to an agent."""
272
+ async with self.lock:
273
+ task = self.tasks[task_id]
274
+ agent = self.agents[agent_id]
275
+
276
+ task.assigned_to = agent_id
277
+ task.state = "assigned"
278
+ agent.state = AgentState.BUSY
279
+ agent.load += 1
280
+ agent.last_active = datetime.now()
281
+
282
+ self.logger.info(f"Assigned task {task_id} to agent {agent_id}")
283
+
284
+ # Notify agent
285
+ await self.message_queue.put({
286
+ "type": "task_assignment",
287
+ "task_id": task_id,
288
+ "agent_id": agent_id,
289
+ "timestamp": datetime.now()
290
+ })
291
+
292
+ def _update_task_graph(self, task: Task) -> None:
293
+ """Update the task dependency graph."""
294
+ self.task_graph.add_node(task.id, task=task)
295
+ for dep_id in task.dependencies:
296
+ self.task_graph.add_edge(dep_id, task.id)
297
+
298
+ async def _monitor_system_state(self):
299
+ """Monitor overall system state."""
300
+ while True:
301
+ try:
302
+ # Collect agent states
303
+ agent_states = {
304
+ agent_id: {
305
+ "state": agent.state,
306
+ "load": agent.load,
307
+ "metrics": agent.metrics
308
+ }
309
+ for agent_id, agent in self.agents.items()
310
+ }
311
+
312
+ # Collect task states
313
+ task_states = {
314
+ task_id: {
315
+ "state": task.state,
316
+ "assigned_to": task.assigned_to,
317
+ "deadline": task.deadline
318
+ }
319
+ for task_id, task in self.tasks.items()
320
+ }
321
+
322
+ # Update global state
323
+ self.global_state = {
324
+ "timestamp": datetime.now(),
325
+ "agents": agent_states,
326
+ "tasks": task_states,
327
+ "resource_usage": self._get_resource_usage(),
328
+ "performance_metrics": self._calculate_performance_metrics()
329
+ }
330
+
331
+ # Archive state
332
+ self.state_history.append(self.global_state.copy())
333
+
334
+ # Trim history if too long
335
+ if len(self.state_history) > 1000:
336
+ self.state_history = self.state_history[-1000:]
337
+
338
+ # Check for anomalies
339
+ await self._check_anomalies()
340
+
341
+ await asyncio.sleep(1) # Monitor frequency
342
+
343
+ except Exception as e:
344
+ self.logger.error(f"Error in system monitoring: {e}")
345
+ await self._handle_error("monitoring_error", e)
346
+
347
+ def _get_resource_usage(self) -> Dict[str, float]:
348
+ """Get current resource usage statistics."""
349
+ return {
350
+ "cpu_usage": sum(agent.load for agent in self.agents.values()) / len(self.agents),
351
+ "memory_usage": len(self.state_history) * 1000, # Rough estimate
352
+ "queue_size": self.message_queue.qsize()
353
+ }
354
+
355
+ def _calculate_performance_metrics(self) -> Dict[str, float]:
356
+ """Calculate current performance metrics."""
357
+ metrics = {}
358
+
359
+ # Task completion rate
360
+ completed_tasks = sum(1 for task in self.tasks.values() if task.state == "completed")
361
+ total_tasks = len(self.tasks)
362
+ metrics["task_completion_rate"] = completed_tasks / max(1, total_tasks)
363
+
364
+ # Average task duration
365
+ durations = []
366
+ for task in self.tasks.values():
367
+ if task.state == "completed" and "completion_time" in task.metadata:
368
+ duration = (task.metadata["completion_time"] - task.created_at).total_seconds()
369
+ durations.append(duration)
370
+ metrics["avg_task_duration"] = sum(durations) / len(durations) if durations else 0
371
+
372
+ # Agent utilization
373
+ metrics["agent_utilization"] = sum(agent.load for agent in self.agents.values()) / len(self.agents)
374
+
375
+ return metrics
376
+
377
+ async def _check_anomalies(self):
378
+ """Check for system anomalies."""
379
+ # Check for overloaded agents
380
+ for agent_id, agent in self.agents.items():
381
+ if agent.load > 0.9: # 90% load threshold
382
+ await self._handle_overload(agent_id)
383
+
384
+ # Check for stalled tasks
385
+ now = datetime.now()
386
+ for task_id, task in self.tasks.items():
387
+ if task.state == "assigned":
388
+ duration = (now - task.created_at).total_seconds()
389
+ if duration > 3600: # 1 hour threshold
390
+ await self._handle_stalled_task(task_id)
391
+
392
+ # Check for missed deadlines
393
+ for task_id, task in self.tasks.items():
394
+ if task.deadline and now > task.deadline and task.state != "completed":
395
+ await self._handle_missed_deadline(task_id)
396
+
397
+ async def _handle_overload(self, agent_id: str):
398
+ """Handle an overloaded agent."""
399
+ agent = self.agents[agent_id]
400
+
401
+ # Try to redistribute tasks
402
+ assigned_tasks = [
403
+ task_id for task_id, task in self.tasks.items()
404
+ if task.assigned_to == agent_id and task.state == "assigned"
405
+ ]
406
+
407
+ for task_id in assigned_tasks:
408
+ # Find another suitable agent
409
+ new_agent_id = await self._find_suitable_agent(self.tasks[task_id])
410
+ if new_agent_id:
411
+ await self._reassign_task(task_id, new_agent_id)
412
+
413
+ async def _handle_stalled_task(self, task_id: str):
414
+ """Handle a stalled task."""
415
+ task = self.tasks[task_id]
416
+
417
+ # First, try to ping the assigned agent
418
+ if task.assigned_to:
419
+ agent = self.agents[task.assigned_to]
420
+ if agent.state == AgentState.ERROR:
421
+ # Agent is in error state, reassign task
422
+ await self._reassign_task(task_id, None)
423
+ else:
424
+ # Request status update from agent
425
+ await self.message_queue.put({
426
+ "type": "status_request",
427
+ "task_id": task_id,
428
+ "agent_id": task.assigned_to,
429
+ "timestamp": datetime.now()
430
+ })
431
+
432
+ async def _handle_missed_deadline(self, task_id: str):
433
+ """Handle a missed deadline."""
434
+ task = self.tasks[task_id]
435
+
436
+ # Log the incident
437
+ self.logger.warning(f"Task {task_id} missed deadline: {task.deadline}")
438
+
439
+ # Update task priority to CRITICAL
440
+ task.priority = TaskPriority.CRITICAL
441
+
442
+ # If task is assigned, try to speed it up
443
+ if task.assigned_to:
444
+ await self.message_queue.put({
445
+ "type": "expedite_request",
446
+ "task_id": task_id,
447
+ "agent_id": task.assigned_to,
448
+ "timestamp": datetime.now()
449
+ })
450
+ else:
451
+ # If not assigned, try to assign to fastest available agent
452
+ await self._plan_task_execution(task_id)
453
+
454
+ async def _reassign_task(self, task_id: str, new_agent_id: Optional[str] = None):
455
+ """Reassign a task to a new agent."""
456
+ task = self.tasks[task_id]
457
+ old_agent_id = task.assigned_to
458
+
459
+ if old_agent_id:
460
+ # Update old agent
461
+ old_agent = self.agents[old_agent_id]
462
+ old_agent.load -= 1
463
+ if old_agent.load <= 0:
464
+ old_agent.state = AgentState.IDLE
465
+
466
+ if new_agent_id is None:
467
+ # Find new suitable agent
468
+ new_agent_id = await self._find_suitable_agent(task)
469
+
470
+ if new_agent_id:
471
+ # Assign to new agent
472
+ await self._assign_task(task_id, new_agent_id)
473
+ else:
474
+ # No suitable agent found, mark task as pending
475
+ task.state = "pending"
476
+ task.assigned_to = None
477
+
478
+ def _register_error_handlers(self):
479
+ """Register basic error handlers."""
480
+ self.error_handlers.update({
481
+ "monitoring_error": self._handle_monitoring_error,
482
+ "agent_error": self._handle_agent_error,
483
+ "task_error": self._handle_task_error,
484
+ "resource_error": self._handle_resource_error
485
+ })
486
+
487
+ self.recovery_strategies.update({
488
+ "agent_recovery": self._recover_agent,
489
+ "task_recovery": self._recover_task,
490
+ "resource_recovery": self._recover_resource
491
+ })
492
+
493
+ async def _handle_error(self, error_type: str, error: Exception):
494
+ """Handle an error using registered handlers."""
495
+ handler = self.error_handlers.get(error_type)
496
+ if handler:
497
+ try:
498
+ await handler(error)
499
+ except Exception as e:
500
+ self.logger.error(f"Error in error handler: {e}")
501
+ else:
502
+ self.logger.error(f"No handler for error type: {error_type}")
503
+ self.logger.error(f"Error: {error}")
504
+
505
+ async def _handle_monitoring_error(self, error: Exception):
506
+ """Handle monitoring system errors."""
507
+ self.logger.error(f"Monitoring error: {error}")
508
+ # Implement recovery logic
509
+ pass
510
+
511
+ async def _handle_agent_error(self, error: Exception):
512
+ """Handle agent-related errors."""
513
+ self.logger.error(f"Agent error: {error}")
514
+ # Implement recovery logic
515
+ pass
516
+
517
+ async def _handle_task_error(self, error: Exception):
518
+ """Handle task-related errors."""
519
+ self.logger.error(f"Task error: {error}")
520
+ # Implement recovery logic
521
+ pass
522
+
523
+ async def _handle_resource_error(self, error: Exception):
524
+ """Handle resource-related errors."""
525
+ self.logger.error(f"Resource error: {error}")
526
+ # Implement recovery logic
527
+ pass
528
+
529
+ async def _recover_agent(self, agent_id: str):
530
+ """Recover a failed agent."""
531
+ try:
532
+ agent = self.agents[agent_id]
533
+
534
+ # Log recovery attempt
535
+ self.logger.info(f"Attempting to recover agent {agent_id}")
536
+
537
+ # Reset agent state
538
+ agent.state = AgentState.IDLE
539
+ agent.load = 0
540
+ agent.last_active = datetime.now()
541
+
542
+ # Reassign any tasks that were assigned to this agent
543
+ for task_id, task in self.tasks.items():
544
+ if task.assigned_to == agent_id:
545
+ await self._reassign_task(task_id)
546
+
547
+ # Update metrics
548
+ agent.metrics["recovery_attempts"] = agent.metrics.get("recovery_attempts", 0) + 1
549
+
550
+ self.logger.info(f"Successfully recovered agent {agent_id}")
551
+ return True
552
+
553
+ except Exception as e:
554
+ self.logger.error(f"Failed to recover agent {agent_id}: {e}")
555
+ return False
556
+
557
+ async def _recover_task(self, task_id: str):
558
+ """Recover a failed task."""
559
+ try:
560
+ task = self.tasks[task_id]
561
+
562
+ # Log recovery attempt
563
+ self.logger.info(f"Attempting to recover task {task_id}")
564
+
565
+ # Reset task state
566
+ task.state = "pending"
567
+ task.assigned_to = None
568
+
569
+ # Try to reassign the task
570
+ await self._reassign_task(task_id)
571
+
572
+ self.logger.info(f"Successfully recovered task {task_id}")
573
+ return True
574
+
575
+ except Exception as e:
576
+ self.logger.error(f"Failed to recover task {task_id}: {e}")
577
+ return False
578
+
579
+ async def _recover_resource(self, resource_id: str):
580
+ """Recover a failed resource."""
581
+ try:
582
+ # Log recovery attempt
583
+ self.logger.info(f"Attempting to recover resource {resource_id}")
584
+
585
+ # Release any locks on the resource
586
+ if resource_id in self.resource_locks:
587
+ lock = self.resource_locks[resource_id]
588
+ if lock.locked():
589
+ lock.release()
590
+
591
+ # Reset resource state
592
+ if resource_id in self.resource_pool:
593
+ self.resource_pool[resource_id] = {
594
+ "state": "available",
595
+ "last_error": None,
596
+ "last_recovery": datetime.now()
597
+ }
598
+
599
+ self.logger.info(f"Successfully recovered resource {resource_id}")
600
+ return True
601
+
602
+ except Exception as e:
603
+ self.logger.error(f"Failed to recover resource {resource_id}: {e}")
604
+ return False
605
+
606
+ async def create_agent(self, role: AgentRole, capabilities: List[str]) -> str:
607
+ """Create a new agent with specified role and capabilities."""
608
+ agent_id = str(uuid.uuid4())
609
+
610
+ agent_metadata = AgentMetadata(
611
+ id=agent_id,
612
+ role=role,
613
+ capabilities=capabilities,
614
+ state=AgentState.IDLE,
615
+ load=0.0,
616
+ last_active=datetime.now(),
617
+ metrics={
618
+ "tasks_completed": 0,
619
+ "success_rate": 1.0,
620
+ "avg_response_time": 0.0,
621
+ "resource_usage": 0.0
622
+ }
623
+ )
624
+
625
+ self.agents[agent_id] = agent_metadata
626
+ self.logger.info(f"Created new agent {agent_id} with role {role}")
627
+
628
+ return agent_id
reasoning.py ADDED
The diff for this file is too large to render. See raw diff
 
reasoning/__init__.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Advanced Reasoning Engine for Multi-Model System
3
+ ---------------------------------------------
4
+ A highly sophisticated reasoning system combining multiple reasoning strategies.
5
+
6
+ Core Reasoning:
7
+ 1. Chain of Thought (CoT)
8
+ 2. Tree of Thoughts (ToT)
9
+ 3. Recursive Reasoning
10
+ 4. Analogical Reasoning
11
+ 5. Meta-Learning
12
+ 6. Local LLM
13
+
14
+ Advanced Reasoning:
15
+ 7. Neurosymbolic Reasoning
16
+ 8. Bayesian Reasoning
17
+ 9. Quantum Reasoning
18
+ 10. Emergent Reasoning
19
+ 11. Multimodal Reasoning
20
+ 12. Specialized Reasoning
21
+
22
+ Learning & Adaptation:
23
+ 13. Market Analysis
24
+ 14. Portfolio Optimization
25
+ 15. Venture Strategies
26
+ 16. Monetization Strategies
27
+ """
28
+
29
+ from .base import ReasoningStrategy
30
+ from .multimodal import MultiModalReasoning
31
+ from .bayesian import BayesianReasoning
32
+ from .quantum import QuantumReasoning
33
+ from .neurosymbolic import NeurosymbolicReasoning
34
+ from .emergent import EmergentReasoning
35
+ from .meta_learning import MetaLearningStrategy
36
+ from .chain_of_thought import ChainOfThoughtStrategy
37
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
38
+ from .recursive import RecursiveReasoning
39
+ from .analogical import AnalogicalReasoning
40
+ from .specialized import SpecializedReasoning
41
+ from .local_llm import LocalLLMStrategy
42
+ from .market_analysis import MarketAnalysisStrategy
43
+ from .portfolio_optimization import PortfolioOptimizationStrategy
44
+ from .venture_strategies import VentureStrategy
45
+ from .monetization import MonetizationStrategy
46
+ from .unified_engine import UnifiedReasoningEngine, StrategyType, StrategyResult, UnifiedResult
47
+
48
+ __all__ = [
49
+ 'ReasoningStrategy',
50
+ 'MultiModalReasoning',
51
+ 'BayesianReasoning',
52
+ 'QuantumReasoning',
53
+ 'NeurosymbolicReasoning',
54
+ 'EmergentReasoning',
55
+ 'MetaLearningStrategy',
56
+ 'ChainOfThoughtStrategy',
57
+ 'TreeOfThoughtsStrategy',
58
+ 'RecursiveReasoning',
59
+ 'AnalogicalReasoning',
60
+ 'SpecializedReasoning',
61
+ 'LocalLLMStrategy',
62
+ 'MarketAnalysisStrategy',
63
+ 'PortfolioOptimizationStrategy',
64
+ 'VentureStrategy',
65
+ 'MonetizationStrategy',
66
+ 'UnifiedReasoningEngine',
67
+ 'StrategyType',
68
+ 'StrategyResult',
69
+ 'UnifiedResult'
70
+ ]
reasoning/agentic.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized reasoning strategies for Agentic Workflow."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class TaskType(Enum):
15
+ """Types of tasks in agentic workflow."""
16
+ CODE_GENERATION = "code_generation"
17
+ CODE_MODIFICATION = "code_modification"
18
+ CODE_REVIEW = "code_review"
19
+ DEBUGGING = "debugging"
20
+ ARCHITECTURE = "architecture"
21
+ OPTIMIZATION = "optimization"
22
+ DOCUMENTATION = "documentation"
23
+ TESTING = "testing"
24
+
25
+ class ResourceType(Enum):
26
+ """Types of resources in agentic workflow."""
27
+ CODE_CONTEXT = "code_context"
28
+ SYSTEM_CONTEXT = "system_context"
29
+ USER_CONTEXT = "user_context"
30
+ TOOLS = "tools"
31
+ APIS = "apis"
32
+ DOCUMENTATION = "documentation"
33
+ DEPENDENCIES = "dependencies"
34
+ HISTORY = "history"
35
+
36
+ @dataclass
37
+ class TaskComponent:
38
+ """Component of a decomposed task."""
39
+ id: str
40
+ type: TaskType
41
+ description: str
42
+ dependencies: List[str]
43
+ resources: Dict[ResourceType, Any]
44
+ constraints: List[str]
45
+ priority: float
46
+ metadata: Dict[str, Any] = field(default_factory=dict)
47
+
48
+ @dataclass
49
+ class ResourceAllocation:
50
+ """Resource allocation for a task."""
51
+ resource_type: ResourceType
52
+ quantity: Union[int, float]
53
+ priority: float
54
+ constraints: List[str]
55
+ metadata: Dict[str, Any] = field(default_factory=dict)
56
+
57
+ @dataclass
58
+ class ExecutionStep:
59
+ """Step in task execution."""
60
+ id: str
61
+ task_id: str
62
+ action: str
63
+ resources: Dict[ResourceType, Any]
64
+ status: str
65
+ result: Optional[Dict[str, Any]]
66
+ feedback: List[str]
67
+ timestamp: datetime = field(default_factory=datetime.now)
68
+
69
+ class TaskDecompositionStrategy(ReasoningStrategy):
70
+ """
71
+ Advanced task decomposition strategy that:
72
+ 1. Analyzes task complexity and dependencies
73
+ 2. Breaks down tasks into manageable components
74
+ 3. Identifies resource requirements
75
+ 4. Establishes execution order
76
+ 5. Manages constraints and priorities
77
+ """
78
+
79
+ def __init__(self, max_components: int = 10):
80
+ self.max_components = max_components
81
+ self.components: Dict[str, TaskComponent] = {}
82
+
83
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
84
+ """Decompose task into components."""
85
+ try:
86
+ # Analyze task
87
+ task_analysis = await self._analyze_task(query, context)
88
+
89
+ # Generate components
90
+ components = await self._generate_components(task_analysis, context)
91
+
92
+ # Establish dependencies
93
+ dependency_graph = await self._establish_dependencies(components, context)
94
+
95
+ # Determine execution order
96
+ execution_order = await self._determine_execution_order(
97
+ components, dependency_graph, context)
98
+
99
+ return {
100
+ "success": True,
101
+ "components": [self._component_to_dict(c) for c in components],
102
+ "dependency_graph": dependency_graph,
103
+ "execution_order": execution_order,
104
+ "metadata": {
105
+ "total_components": len(components),
106
+ "complexity_score": task_analysis.get("complexity_score", 0.0),
107
+ "resource_requirements": task_analysis.get("resource_requirements", {})
108
+ }
109
+ }
110
+ except Exception as e:
111
+ logging.error(f"Error in task decomposition: {str(e)}")
112
+ return {"success": False, "error": str(e)}
113
+
114
+ class ResourceManagementStrategy(ReasoningStrategy):
115
+ """
116
+ Advanced resource management strategy that:
117
+ 1. Tracks available resources
118
+ 2. Allocates resources to tasks
119
+ 3. Handles resource constraints
120
+ 4. Optimizes resource utilization
121
+ 5. Manages resource dependencies
122
+ """
123
+
124
+ def __init__(self):
125
+ self.allocations: Dict[str, ResourceAllocation] = {}
126
+ self.utilization_history: List[Dict[str, Any]] = []
127
+
128
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
129
+ """Manage resource allocation."""
130
+ try:
131
+ # Analyze resource requirements
132
+ requirements = await self._analyze_requirements(query, context)
133
+
134
+ # Check resource availability
135
+ availability = await self._check_availability(requirements, context)
136
+
137
+ # Generate allocation plan
138
+ allocation_plan = await self._generate_allocation_plan(
139
+ requirements, availability, context)
140
+
141
+ # Optimize allocations
142
+ optimized_plan = await self._optimize_allocations(allocation_plan, context)
143
+
144
+ return {
145
+ "success": True,
146
+ "allocation_plan": optimized_plan,
147
+ "resource_metrics": {
148
+ "utilization": self._calculate_utilization(),
149
+ "efficiency": self._calculate_efficiency(),
150
+ "constraints_satisfied": self._check_constraints(optimized_plan)
151
+ }
152
+ }
153
+ except Exception as e:
154
+ logging.error(f"Error in resource management: {str(e)}")
155
+ return {"success": False, "error": str(e)}
156
+
157
+ class ContextualPlanningStrategy(ReasoningStrategy):
158
+ """
159
+ Advanced contextual planning strategy that:
160
+ 1. Analyzes multiple context types
161
+ 2. Generates context-aware plans
162
+ 3. Handles context changes
163
+ 4. Maintains context consistency
164
+ 5. Optimizes for context constraints
165
+ """
166
+
167
+ def __init__(self):
168
+ self.context_history: List[Dict[str, Any]] = []
169
+ self.plan_adaptations: List[Dict[str, Any]] = []
170
+
171
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
172
+ """Generate context-aware plan."""
173
+ try:
174
+ # Analyze contexts
175
+ context_analysis = await self._analyze_contexts(query, context)
176
+
177
+ # Generate base plan
178
+ base_plan = await self._generate_base_plan(context_analysis, context)
179
+
180
+ # Adapt to contexts
181
+ adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis)
182
+
183
+ # Validate plan
184
+ validation = await self._validate_plan(adapted_plan, context)
185
+
186
+ return {
187
+ "success": True,
188
+ "plan": adapted_plan,
189
+ "context_impact": context_analysis.get("impact_assessment", {}),
190
+ "adaptations": self.plan_adaptations,
191
+ "validation_results": validation
192
+ }
193
+ except Exception as e:
194
+ logging.error(f"Error in contextual planning: {str(e)}")
195
+ return {"success": False, "error": str(e)}
196
+
197
+ class AdaptiveExecutionStrategy(ReasoningStrategy):
198
+ """
199
+ Advanced adaptive execution strategy that:
200
+ 1. Monitors execution progress
201
+ 2. Adapts to changes and feedback
202
+ 3. Handles errors and exceptions
203
+ 4. Optimizes execution flow
204
+ 5. Maintains execution state
205
+ """
206
+
207
+ def __init__(self):
208
+ self.execution_steps: List[ExecutionStep] = []
209
+ self.adaptation_history: List[Dict[str, Any]] = []
210
+
211
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
212
+ """Execute task adaptively."""
213
+ try:
214
+ # Initialize execution
215
+ execution_state = await self._initialize_execution(query, context)
216
+
217
+ # Monitor and adapt
218
+ while not self._is_execution_complete(execution_state):
219
+ # Execute step
220
+ step_result = await self._execute_step(execution_state, context)
221
+
222
+ # Process feedback
223
+ feedback = await self._process_feedback(step_result, context)
224
+
225
+ # Adapt execution
226
+ execution_state = await self._adapt_execution(
227
+ execution_state, feedback, context)
228
+
229
+ # Record step
230
+ self._record_step(step_result, feedback)
231
+
232
+ return {
233
+ "success": True,
234
+ "execution_trace": [self._step_to_dict(s) for s in self.execution_steps],
235
+ "adaptations": self.adaptation_history,
236
+ "final_state": execution_state
237
+ }
238
+ except Exception as e:
239
+ logging.error(f"Error in adaptive execution: {str(e)}")
240
+ return {"success": False, "error": str(e)}
241
+
242
+ class FeedbackIntegrationStrategy(ReasoningStrategy):
243
+ """
244
+ Advanced feedback integration strategy that:
245
+ 1. Collects multiple types of feedback
246
+ 2. Analyzes feedback patterns
247
+ 3. Generates improvement suggestions
248
+ 4. Tracks feedback implementation
249
+ 5. Measures feedback impact
250
+ """
251
+
252
+ def __init__(self):
253
+ self.feedback_history: List[Dict[str, Any]] = []
254
+ self.improvement_history: List[Dict[str, Any]] = []
255
+
256
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
257
+ """Integrate and apply feedback."""
258
+ try:
259
+ # Collect feedback
260
+ feedback = await self._collect_feedback(query, context)
261
+
262
+ # Analyze patterns
263
+ patterns = await self._analyze_patterns(feedback, context)
264
+
265
+ # Generate improvements
266
+ improvements = await self._generate_improvements(patterns, context)
267
+
268
+ # Implement changes
269
+ implementation = await self._implement_improvements(improvements, context)
270
+
271
+ # Measure impact
272
+ impact = await self._measure_impact(implementation, context)
273
+
274
+ return {
275
+ "success": True,
276
+ "feedback_analysis": patterns,
277
+ "improvements": improvements,
278
+ "implementation_status": implementation,
279
+ "impact_metrics": impact
280
+ }
281
+ except Exception as e:
282
+ logging.error(f"Error in feedback integration: {str(e)}")
283
+ return {"success": False, "error": str(e)}
284
+
285
+ async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
286
+ """Collect feedback from multiple sources."""
287
+ prompt = f"""
288
+ Collect feedback from:
289
+ Query: {query}
290
+ Context: {json.dumps(context)}
291
+
292
+ Consider:
293
+ 1. User feedback
294
+ 2. System metrics
295
+ 3. Code analysis
296
+ 4. Performance data
297
+ 5. Error patterns
298
+
299
+ Format as:
300
+ [Feedback]
301
+ Source: ...
302
+ Type: ...
303
+ Content: ...
304
+ Priority: ...
305
+ """
306
+
307
+ response = await context["groq_api"].predict(prompt)
308
+ return self._parse_feedback(response["answer"])
309
+
310
+ def _parse_feedback(self, response: str) -> List[Dict[str, Any]]:
311
+ """Parse feedback from response."""
312
+ feedback_items = []
313
+ current = None
314
+
315
+ for line in response.split('\n'):
316
+ line = line.strip()
317
+ if not line:
318
+ continue
319
+
320
+ if line.startswith('[Feedback]'):
321
+ if current:
322
+ feedback_items.append(current)
323
+ current = {
324
+ "source": "",
325
+ "type": "",
326
+ "content": "",
327
+ "priority": 0.0
328
+ }
329
+ elif current:
330
+ if line.startswith('Source:'):
331
+ current["source"] = line[7:].strip()
332
+ elif line.startswith('Type:'):
333
+ current["type"] = line[5:].strip()
334
+ elif line.startswith('Content:'):
335
+ current["content"] = line[8:].strip()
336
+ elif line.startswith('Priority:'):
337
+ try:
338
+ current["priority"] = float(line[9:].strip())
339
+ except:
340
+ pass
341
+
342
+ if current:
343
+ feedback_items.append(current)
344
+
345
+ return feedback_items
reasoning/analogical.py ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Analogical reasoning implementation with advanced pattern matching and transfer learning."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class AnalogicalLevel(Enum):
15
+ """Levels of analogical similarity."""
16
+ SURFACE = "surface"
17
+ STRUCTURAL = "structural"
18
+ SEMANTIC = "semantic"
19
+ FUNCTIONAL = "functional"
20
+ CAUSAL = "causal"
21
+ ABSTRACT = "abstract"
22
+
23
+ class MappingType(Enum):
24
+ """Types of analogical mappings."""
25
+ DIRECT = "direct"
26
+ TRANSFORMED = "transformed"
27
+ COMPOSITE = "composite"
28
+ ABSTRACT = "abstract"
29
+ METAPHORICAL = "metaphorical"
30
+ HYBRID = "hybrid"
31
+
32
+ @dataclass
33
+ class AnalogicalPattern:
34
+ """Represents a pattern for analogical matching."""
35
+ id: str
36
+ level: AnalogicalLevel
37
+ features: Dict[str, Any]
38
+ relations: List[Tuple[str, str, str]] # (entity1, relation, entity2)
39
+ constraints: List[str]
40
+ metadata: Dict[str, Any] = field(default_factory=dict)
41
+
42
+ @dataclass
43
+ class AnalogicalMapping:
44
+ """Represents a mapping between source and target domains."""
45
+ id: str
46
+ type: MappingType
47
+ source_elements: Dict[str, Any]
48
+ target_elements: Dict[str, Any]
49
+ correspondences: List[Tuple[str, str, float]] # (source, target, strength)
50
+ transformations: List[Dict[str, Any]]
51
+ confidence: float
52
+ metadata: Dict[str, Any] = field(default_factory=dict)
53
+
54
+ @dataclass
55
+ class AnalogicalSolution:
56
+ """Represents a solution derived through analogical reasoning."""
57
+ id: str
58
+ source_analogy: str
59
+ mapping: AnalogicalMapping
60
+ adaptation: Dict[str, Any]
61
+ inference: Dict[str, Any]
62
+ confidence: float
63
+ validation: Dict[str, Any]
64
+ metadata: Dict[str, Any] = field(default_factory=dict)
65
+
66
+ class AnalogicalReasoning(ReasoningStrategy):
67
+ """
68
+ Advanced Analogical Reasoning implementation with:
69
+ - Multi-level pattern matching
70
+ - Sophisticated similarity metrics
71
+ - Transfer learning capabilities
72
+ - Dynamic adaptation mechanisms
73
+ - Quality assessment
74
+ - Learning from experience
75
+ """
76
+
77
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
78
+ """Initialize analogical reasoning."""
79
+ super().__init__()
80
+ self.config = config or {}
81
+
82
+ # Standard reasoning parameters
83
+ self.min_confidence = self.config.get('min_confidence', 0.7)
84
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
85
+ self.learning_rate = self.config.get('learning_rate', 0.1)
86
+ self.strategy_weights = self.config.get('strategy_weights', {
87
+ "LOCAL_LLM": 0.8,
88
+ "CHAIN_OF_THOUGHT": 0.6,
89
+ "TREE_OF_THOUGHTS": 0.5,
90
+ "META_LEARNING": 0.4
91
+ })
92
+
93
+ # Analogical reasoning specific parameters
94
+ self.min_similarity = self.config.get('min_similarity', 0.6)
95
+ self.max_candidates = self.config.get('max_candidates', 5)
96
+ self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
97
+
98
+ # Knowledge base
99
+ self.patterns: Dict[str, AnalogicalPattern] = {}
100
+ self.mappings: Dict[str, AnalogicalMapping] = {}
101
+ self.solutions: Dict[str, AnalogicalSolution] = {}
102
+
103
+ # Learning components
104
+ self.pattern_weights: Dict[str, float] = defaultdict(float)
105
+ self.success_history: List[Dict[str, Any]] = []
106
+ self.adaptation_history: List[Dict[str, Any]] = []
107
+
108
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
109
+ """Main reasoning method implementing analogical reasoning."""
110
+ try:
111
+ # Extract patterns from query
112
+ patterns = await self._extract_patterns(query, context)
113
+
114
+ # Find analogical matches
115
+ matches = await self._find_matches(patterns, context)
116
+
117
+ # Create and evaluate mappings
118
+ mappings = await self._create_mappings(matches, context)
119
+
120
+ # Generate and adapt solutions
121
+ solutions = await self._generate_solutions(mappings, context)
122
+
123
+ # Select best solution
124
+ best_solution = await self._select_best_solution(solutions, context)
125
+
126
+ # Learn from experience
127
+ self._update_knowledge(patterns, mappings, best_solution)
128
+
129
+ return {
130
+ "success": True,
131
+ "answer": best_solution.inference["conclusion"],
132
+ "confidence": best_solution.confidence,
133
+ "analogy": {
134
+ "source": best_solution.source_analogy,
135
+ "mapping": self._mapping_to_dict(best_solution.mapping),
136
+ "adaptation": best_solution.adaptation
137
+ },
138
+ "reasoning_trace": best_solution.metadata.get("reasoning_trace", []),
139
+ "meta_insights": best_solution.metadata.get("meta_insights", [])
140
+ }
141
+ except Exception as e:
142
+ logging.error(f"Error in analogical reasoning: {str(e)}")
143
+ return {"success": False, "error": str(e)}
144
+
145
+ async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]:
146
+ """Extract patterns from query for analogical matching."""
147
+ prompt = f"""
148
+ Extract analogical patterns from query:
149
+ Query: {query}
150
+ Context: {json.dumps(context)}
151
+
152
+ For each pattern level:
153
+ 1. Surface features
154
+ 2. Structural relations
155
+ 3. Semantic concepts
156
+ 4. Functional roles
157
+ 5. Causal relationships
158
+ 6. Abstract principles
159
+
160
+ Format as:
161
+ [P1]
162
+ Level: ...
163
+ Features: ...
164
+ Relations: ...
165
+ Constraints: ...
166
+
167
+ [P2]
168
+ ...
169
+ """
170
+
171
+ response = await context["groq_api"].predict(prompt)
172
+ return self._parse_patterns(response["answer"])
173
+
174
+ async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]:
175
+ """Find matching patterns in knowledge base."""
176
+ prompt = f"""
177
+ Find analogical matches:
178
+ Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])}
179
+ Context: {json.dumps(context)}
180
+
181
+ For each match provide:
182
+ 1. Source domain
183
+ 2. Similarity assessment
184
+ 3. Key correspondences
185
+ 4. Transfer potential
186
+
187
+ Format as:
188
+ [M1]
189
+ Source: ...
190
+ Similarity: ...
191
+ Correspondences: ...
192
+ Transfer: ...
193
+
194
+ [M2]
195
+ ...
196
+ """
197
+
198
+ response = await context["groq_api"].predict(prompt)
199
+ return self._parse_matches(response["answer"])
200
+
201
+ async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]:
202
+ """Create mappings between source and target domains."""
203
+ prompt = f"""
204
+ Create analogical mappings:
205
+ Matches: {json.dumps(matches)}
206
+ Context: {json.dumps(context)}
207
+
208
+ For each mapping specify:
209
+ 1. [Type]: {" | ".join([t.value for t in MappingType])}
210
+ 2. [Elements]: Source and target elements
211
+ 3. [Correspondences]: Element mappings
212
+ 4. [Transformations]: Required adaptations
213
+ 5. [Confidence]: Mapping strength
214
+
215
+ Format as:
216
+ [Map1]
217
+ Type: ...
218
+ Elements: ...
219
+ Correspondences: ...
220
+ Transformations: ...
221
+ Confidence: ...
222
+ """
223
+
224
+ response = await context["groq_api"].predict(prompt)
225
+ return self._parse_mappings(response["answer"])
226
+
227
+ async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]:
228
+ """Generate solutions through analogical transfer."""
229
+ prompt = f"""
230
+ Generate analogical solutions:
231
+ Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])}
232
+ Context: {json.dumps(context)}
233
+
234
+ For each solution provide:
235
+ 1. Analogical inference
236
+ 2. Required adaptations
237
+ 3. Validation criteria
238
+ 4. Confidence assessment
239
+ 5. Reasoning trace
240
+
241
+ Format as:
242
+ [S1]
243
+ Inference: ...
244
+ Adaptation: ...
245
+ Validation: ...
246
+ Confidence: ...
247
+ Trace: ...
248
+ """
249
+
250
+ response = await context["groq_api"].predict(prompt)
251
+ return self._parse_solutions(response["answer"], mappings)
252
+
253
+ async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution:
254
+ """Select the best solution based on multiple criteria."""
255
+ prompt = f"""
256
+ Evaluate and select best solution:
257
+ Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])}
258
+ Context: {json.dumps(context)}
259
+
260
+ Evaluate based on:
261
+ 1. Inference quality
262
+ 2. Adaptation feasibility
263
+ 3. Validation strength
264
+ 4. Overall confidence
265
+
266
+ Format as:
267
+ [Evaluation]
268
+ Rankings: ...
269
+ Rationale: ...
270
+ Selection: ...
271
+ Confidence: ...
272
+ """
273
+
274
+ response = await context["groq_api"].predict(prompt)
275
+ selection = self._parse_selection(response["answer"])
276
+
277
+ # Find selected solution
278
+ selected = max(solutions, key=lambda s: s.confidence)
279
+ for solution in solutions:
280
+ if solution.id == selection.get("selected_id"):
281
+ selected = solution
282
+ break
283
+
284
+ return selected
285
+
286
+ def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution):
287
+ """Update knowledge base with new patterns and successful mappings."""
288
+ # Update patterns
289
+ for pattern in patterns:
290
+ if pattern.id not in self.patterns:
291
+ self.patterns[pattern.id] = pattern
292
+ self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence
293
+
294
+ # Update mappings
295
+ if solution.mapping.id not in self.mappings:
296
+ self.mappings[solution.mapping.id] = solution.mapping
297
+
298
+ # Record solution
299
+ self.solutions[solution.id] = solution
300
+
301
+ # Update history
302
+ self.success_history.append({
303
+ "timestamp": datetime.now().isoformat(),
304
+ "solution_id": solution.id,
305
+ "confidence": solution.confidence,
306
+ "patterns": [p.id for p in patterns],
307
+ "mapping_type": solution.mapping.type.value
308
+ })
309
+
310
+ # Update adaptation history
311
+ self.adaptation_history.append({
312
+ "timestamp": datetime.now().isoformat(),
313
+ "solution_id": solution.id,
314
+ "adaptations": solution.adaptation,
315
+ "success": solution.confidence >= self.adaptation_threshold
316
+ })
317
+
318
+ def _parse_patterns(self, response: str) -> List[AnalogicalPattern]:
319
+ """Parse patterns from response."""
320
+ patterns = []
321
+ current = None
322
+
323
+ for line in response.split('\n'):
324
+ line = line.strip()
325
+ if not line:
326
+ continue
327
+
328
+ if line.startswith('[P'):
329
+ if current:
330
+ patterns.append(current)
331
+ current = None
332
+ elif line.startswith('Level:'):
333
+ level_str = line[6:].strip().lower()
334
+ try:
335
+ level = AnalogicalLevel(level_str)
336
+ current = AnalogicalPattern(
337
+ id=f"pattern_{len(patterns)}",
338
+ level=level,
339
+ features={},
340
+ relations=[],
341
+ constraints=[],
342
+ metadata={}
343
+ )
344
+ except ValueError:
345
+ logging.warning(f"Invalid analogical level: {level_str}")
346
+ elif current:
347
+ if line.startswith('Features:'):
348
+ try:
349
+ current.features = json.loads(line[9:].strip())
350
+ except:
351
+ current.features = {"raw": line[9:].strip()}
352
+ elif line.startswith('Relations:'):
353
+ relations = [r.strip() for r in line[10:].split(',')]
354
+ current.relations = [(r.split()[0], r.split()[1], r.split()[2])
355
+ for r in relations if len(r.split()) >= 3]
356
+ elif line.startswith('Constraints:'):
357
+ current.constraints = [c.strip() for c in line[12:].split(',')]
358
+
359
+ if current:
360
+ patterns.append(current)
361
+
362
+ return patterns
363
+
364
+ def _parse_matches(self, response: str) -> List[Dict[str, Any]]:
365
+ """Parse matches from response."""
366
+ matches = []
367
+ current = None
368
+
369
+ for line in response.split('\n'):
370
+ line = line.strip()
371
+ if not line:
372
+ continue
373
+
374
+ if line.startswith('[M'):
375
+ if current:
376
+ matches.append(current)
377
+ current = {
378
+ "source": "",
379
+ "similarity": 0.0,
380
+ "correspondences": [],
381
+ "transfer": []
382
+ }
383
+ elif current:
384
+ if line.startswith('Source:'):
385
+ current["source"] = line[7:].strip()
386
+ elif line.startswith('Similarity:'):
387
+ try:
388
+ current["similarity"] = float(line[11:].strip())
389
+ except:
390
+ pass
391
+ elif line.startswith('Correspondences:'):
392
+ current["correspondences"] = [c.strip() for c in line[16:].split(',')]
393
+ elif line.startswith('Transfer:'):
394
+ current["transfer"] = [t.strip() for t in line[9:].split(',')]
395
+
396
+ if current:
397
+ matches.append(current)
398
+
399
+ return matches
400
+
401
+ def _parse_mappings(self, response: str) -> List[AnalogicalMapping]:
402
+ """Parse mappings from response."""
403
+ mappings = []
404
+ current = None
405
+
406
+ for line in response.split('\n'):
407
+ line = line.strip()
408
+ if not line:
409
+ continue
410
+
411
+ if line.startswith('[Map'):
412
+ if current:
413
+ mappings.append(current)
414
+ current = None
415
+ elif line.startswith('Type:'):
416
+ type_str = line[5:].strip().lower()
417
+ try:
418
+ mapping_type = MappingType(type_str)
419
+ current = AnalogicalMapping(
420
+ id=f"mapping_{len(mappings)}",
421
+ type=mapping_type,
422
+ source_elements={},
423
+ target_elements={},
424
+ correspondences=[],
425
+ transformations=[],
426
+ confidence=0.0,
427
+ metadata={}
428
+ )
429
+ except ValueError:
430
+ logging.warning(f"Invalid mapping type: {type_str}")
431
+ elif current:
432
+ if line.startswith('Elements:'):
433
+ try:
434
+ elements = json.loads(line[9:].strip())
435
+ current.source_elements = elements.get("source", {})
436
+ current.target_elements = elements.get("target", {})
437
+ except:
438
+ pass
439
+ elif line.startswith('Correspondences:'):
440
+ pairs = [c.strip() for c in line[16:].split(',')]
441
+ for pair in pairs:
442
+ parts = pair.split(':')
443
+ if len(parts) >= 2:
444
+ source = parts[0].strip()
445
+ target = parts[1].strip()
446
+ strength = float(parts[2]) if len(parts) > 2 else 1.0
447
+ current.correspondences.append((source, target, strength))
448
+ elif line.startswith('Transformations:'):
449
+ try:
450
+ current.transformations = json.loads(line[16:].strip())
451
+ except:
452
+ current.transformations = [{"raw": line[16:].strip()}]
453
+ elif line.startswith('Confidence:'):
454
+ try:
455
+ current.confidence = float(line[11:].strip())
456
+ except:
457
+ pass
458
+
459
+ if current:
460
+ mappings.append(current)
461
+
462
+ return mappings
463
+
464
+ def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]:
465
+ """Parse solutions from response."""
466
+ solutions = []
467
+ current = None
468
+
469
+ for line in response.split('\n'):
470
+ line = line.strip()
471
+ if not line:
472
+ continue
473
+
474
+ if line.startswith('[S'):
475
+ if current:
476
+ solutions.append(current)
477
+ current = None
478
+ mapping_idx = len(solutions)
479
+ if mapping_idx < len(mappings):
480
+ current = AnalogicalSolution(
481
+ id=f"solution_{len(solutions)}",
482
+ source_analogy="",
483
+ mapping=mappings[mapping_idx],
484
+ adaptation={},
485
+ inference={},
486
+ confidence=0.0,
487
+ validation={},
488
+ metadata={}
489
+ )
490
+ elif current:
491
+ if line.startswith('Inference:'):
492
+ try:
493
+ current.inference = json.loads(line[10:].strip())
494
+ except:
495
+ current.inference = {"conclusion": line[10:].strip()}
496
+ elif line.startswith('Adaptation:'):
497
+ try:
498
+ current.adaptation = json.loads(line[11:].strip())
499
+ except:
500
+ current.adaptation = {"steps": [line[11:].strip()]}
501
+ elif line.startswith('Validation:'):
502
+ try:
503
+ current.validation = json.loads(line[11:].strip())
504
+ except:
505
+ current.validation = {"criteria": [line[11:].strip()]}
506
+ elif line.startswith('Confidence:'):
507
+ try:
508
+ current.confidence = float(line[11:].strip())
509
+ except:
510
+ pass
511
+ elif line.startswith('Trace:'):
512
+ current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')]
513
+
514
+ if current:
515
+ solutions.append(current)
516
+
517
+ return solutions
518
+
519
+ def _parse_selection(self, response: str) -> Dict[str, Any]:
520
+ """Parse solution selection from response."""
521
+ selection = {
522
+ "selected_id": None,
523
+ "confidence": 0.0,
524
+ "rationale": []
525
+ }
526
+
527
+ for line in response.split('\n'):
528
+ line = line.strip()
529
+ if line.startswith('Selection:'):
530
+ selection["selected_id"] = line[10:].strip()
531
+ elif line.startswith('Confidence:'):
532
+ try:
533
+ selection["confidence"] = float(line[11:].strip())
534
+ except:
535
+ pass
536
+ elif line.startswith('Rationale:'):
537
+ selection["rationale"] = [r.strip() for r in line[10:].split(',')]
538
+
539
+ return selection
540
+
541
+ def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
542
+ """Convert pattern to dictionary for serialization."""
543
+ return {
544
+ "id": pattern.id,
545
+ "level": pattern.level.value,
546
+ "features": pattern.features,
547
+ "relations": pattern.relations,
548
+ "constraints": pattern.constraints,
549
+ "metadata": pattern.metadata
550
+ }
551
+
552
+ def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
553
+ """Convert mapping to dictionary for serialization."""
554
+ return {
555
+ "id": mapping.id,
556
+ "type": mapping.type.value,
557
+ "source_elements": mapping.source_elements,
558
+ "target_elements": mapping.target_elements,
559
+ "correspondences": mapping.correspondences,
560
+ "transformations": mapping.transformations,
561
+ "confidence": mapping.confidence,
562
+ "metadata": mapping.metadata
563
+ }
564
+
565
+ def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
566
+ """Convert solution to dictionary for serialization."""
567
+ return {
568
+ "id": solution.id,
569
+ "source_analogy": solution.source_analogy,
570
+ "mapping": self._mapping_to_dict(solution.mapping),
571
+ "adaptation": solution.adaptation,
572
+ "inference": solution.inference,
573
+ "confidence": solution.confidence,
574
+ "validation": solution.validation,
575
+ "metadata": solution.metadata
576
+ }
577
+
578
+ def get_pattern_statistics(self) -> Dict[str, Any]:
579
+ """Get statistics about pattern usage and effectiveness."""
580
+ return {
581
+ "total_patterns": len(self.patterns),
582
+ "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}),
583
+ "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0,
584
+ "pattern_weights": dict(self.pattern_weights)
585
+ }
586
+
587
+ def get_mapping_statistics(self) -> Dict[str, Any]:
588
+ """Get statistics about mapping effectiveness."""
589
+ return {
590
+ "total_mappings": len(self.mappings),
591
+ "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}),
592
+ "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0,
593
+ "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()})
594
+ }
595
+
596
+ def get_solution_statistics(self) -> Dict[str, Any]:
597
+ """Get statistics about solution quality."""
598
+ return {
599
+ "total_solutions": len(self.solutions),
600
+ "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0,
601
+ "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0
602
+ }
603
+
604
+ def clear_knowledge_base(self):
605
+ """Clear the knowledge base."""
606
+ self.patterns.clear()
607
+ self.mappings.clear()
608
+ self.solutions.clear()
609
+ self.pattern_weights.clear()
610
+ self.success_history.clear()
611
+ self.adaptation_history.clear()
reasoning/base.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Base class for all reasoning strategies."""
2
+
3
+ from typing import Dict, Any
4
+
5
+ class ReasoningStrategy:
6
+ """Base class for reasoning strategies."""
7
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
8
+ """Apply reasoning strategy to query with context.
9
+
10
+ Args:
11
+ query: The query to reason about
12
+ context: Additional context for reasoning
13
+
14
+ Returns:
15
+ Dictionary containing reasoning results
16
+ """
17
+ raise NotImplementedError
reasoning/bayesian.py ADDED
@@ -0,0 +1,325 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced Bayesian reasoning for probabilistic analysis."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class BayesianHypothesis:
16
+ """Bayesian hypothesis with probabilities."""
17
+ name: str
18
+ prior: float
19
+ likelihood: float
20
+ posterior: float = 0.0
21
+ evidence: List[Dict[str, Any]] = field(default_factory=list)
22
+
23
+ class BayesianReasoning(ReasoningStrategy):
24
+ """
25
+ Advanced Bayesian reasoning that:
26
+ 1. Generates hypotheses
27
+ 2. Calculates prior probabilities
28
+ 3. Updates with evidence
29
+ 4. Computes posteriors
30
+ 5. Provides probabilistic analysis
31
+ """
32
+
33
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
34
+ """Initialize Bayesian reasoning."""
35
+ super().__init__()
36
+ self.config = config or {}
37
+
38
+ # Configure Bayesian parameters
39
+ self.prior_weight = self.config.get('prior_weight', 0.3)
40
+ self.evidence_threshold = self.config.get('evidence_threshold', 0.1)
41
+ self.min_likelihood = self.config.get('min_likelihood', 0.01)
42
+
43
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
44
+ """
45
+ Apply Bayesian reasoning to analyze probabilities and update beliefs.
46
+
47
+ Args:
48
+ query: The input query to reason about
49
+ context: Additional context and parameters
50
+
51
+ Returns:
52
+ Dict containing reasoning results and confidence scores
53
+ """
54
+ try:
55
+ # Generate hypotheses
56
+ hypotheses = await self._generate_hypotheses(query, context)
57
+
58
+ # Calculate priors
59
+ priors = await self._calculate_priors(hypotheses, context)
60
+
61
+ # Update with evidence
62
+ posteriors = await self._update_with_evidence(
63
+ hypotheses,
64
+ priors,
65
+ context
66
+ )
67
+
68
+ # Generate analysis
69
+ analysis = await self._generate_analysis(posteriors, context)
70
+
71
+ return {
72
+ 'answer': self._format_analysis(analysis),
73
+ 'confidence': self._calculate_confidence(posteriors),
74
+ 'hypotheses': hypotheses,
75
+ 'priors': priors,
76
+ 'posteriors': posteriors,
77
+ 'analysis': analysis
78
+ }
79
+
80
+ except Exception as e:
81
+ logging.error(f"Bayesian reasoning failed: {str(e)}")
82
+ return {
83
+ 'error': f"Bayesian reasoning failed: {str(e)}",
84
+ 'confidence': 0.0
85
+ }
86
+
87
+ async def _generate_hypotheses(
88
+ self,
89
+ query: str,
90
+ context: Dict[str, Any]
91
+ ) -> List[Dict[str, Any]]:
92
+ """Generate plausible hypotheses."""
93
+ hypotheses = []
94
+
95
+ # Extract key terms for hypothesis generation
96
+ terms = set(query.lower().split())
97
+
98
+ # Generate hypotheses based on context and terms
99
+ if 'options' in context:
100
+ # Use provided options as hypotheses
101
+ for option in context['options']:
102
+ hypotheses.append({
103
+ 'name': option,
104
+ 'description': f"Hypothesis based on option: {option}",
105
+ 'factors': self._extract_factors(option, terms)
106
+ })
107
+ else:
108
+ # Generate default hypotheses
109
+ hypotheses.extend([
110
+ {
111
+ 'name': 'primary',
112
+ 'description': "Primary hypothesis based on direct interpretation",
113
+ 'factors': self._extract_factors(query, terms)
114
+ },
115
+ {
116
+ 'name': 'alternative',
117
+ 'description': "Alternative hypothesis considering other factors",
118
+ 'factors': self._generate_alternative_factors(terms)
119
+ }
120
+ ])
121
+
122
+ return hypotheses
123
+
124
+ async def _calculate_priors(
125
+ self,
126
+ hypotheses: List[Dict[str, Any]],
127
+ context: Dict[str, Any]
128
+ ) -> Dict[str, float]:
129
+ """Calculate prior probabilities."""
130
+ priors = {}
131
+
132
+ # Get historical data if available
133
+ history = context.get('history', {})
134
+ total_cases = sum(history.values()) if history else len(hypotheses)
135
+
136
+ for hypothesis in hypotheses:
137
+ name = hypothesis['name']
138
+
139
+ # Calculate prior from history or use uniform prior
140
+ if name in history:
141
+ priors[name] = history[name] / total_cases
142
+ else:
143
+ priors[name] = 1.0 / len(hypotheses)
144
+
145
+ # Adjust prior based on factors
146
+ factor_weight = len(hypothesis['factors']) / 10 # Normalize factor count
147
+ priors[name] = (
148
+ priors[name] * (1 - self.prior_weight) +
149
+ factor_weight * self.prior_weight
150
+ )
151
+
152
+ # Normalize priors
153
+ total_prior = sum(priors.values())
154
+ if total_prior > 0:
155
+ priors = {
156
+ name: prob / total_prior
157
+ for name, prob in priors.items()
158
+ }
159
+
160
+ return priors
161
+
162
+ async def _update_with_evidence(
163
+ self,
164
+ hypotheses: List[Dict[str, Any]],
165
+ priors: Dict[str, float],
166
+ context: Dict[str, Any]
167
+ ) -> Dict[str, float]:
168
+ """Update probabilities with evidence."""
169
+ posteriors = priors.copy()
170
+
171
+ # Get evidence from context
172
+ evidence = context.get('evidence', [])
173
+ if not evidence:
174
+ return posteriors
175
+
176
+ for e in evidence:
177
+ # Calculate likelihood for each hypothesis
178
+ likelihoods = {}
179
+ for hypothesis in hypotheses:
180
+ name = hypothesis['name']
181
+ likelihood = self._calculate_likelihood(hypothesis, e)
182
+ likelihoods[name] = max(likelihood, self.min_likelihood)
183
+
184
+ # Update posteriors using Bayes' rule
185
+ total_probability = sum(
186
+ likelihoods[name] * posteriors[name]
187
+ for name in posteriors
188
+ )
189
+
190
+ if total_probability > 0:
191
+ posteriors = {
192
+ name: (likelihoods[name] * posteriors[name]) / total_probability
193
+ for name in posteriors
194
+ }
195
+
196
+ return posteriors
197
+
198
+ def _calculate_likelihood(
199
+ self,
200
+ hypothesis: Dict[str, Any],
201
+ evidence: Dict[str, Any]
202
+ ) -> float:
203
+ """Calculate likelihood of evidence given hypothesis."""
204
+ # Extract evidence factors
205
+ evidence_factors = set(
206
+ str(v).lower()
207
+ for v in evidence.values()
208
+ if isinstance(v, (str, int, float))
209
+ )
210
+
211
+ # Compare with hypothesis factors
212
+ common_factors = evidence_factors.intersection(hypothesis['factors'])
213
+
214
+ if not evidence_factors:
215
+ return 0.5 # Neutral likelihood if no factors
216
+
217
+ return len(common_factors) / len(evidence_factors)
218
+
219
+ async def _generate_analysis(
220
+ self,
221
+ posteriors: Dict[str, float],
222
+ context: Dict[str, Any]
223
+ ) -> Dict[str, Any]:
224
+ """Generate probabilistic analysis."""
225
+ # Sort hypotheses by posterior probability
226
+ ranked_hypotheses = sorted(
227
+ posteriors.items(),
228
+ key=lambda x: x[1],
229
+ reverse=True
230
+ )
231
+
232
+ # Calculate statistics
233
+ mean = np.mean(list(posteriors.values()))
234
+ std = np.std(list(posteriors.values()))
235
+ entropy = -sum(
236
+ p * np.log2(p) if p > 0 else 0
237
+ for p in posteriors.values()
238
+ )
239
+
240
+ return {
241
+ 'top_hypothesis': ranked_hypotheses[0][0],
242
+ 'probability': ranked_hypotheses[0][1],
243
+ 'alternatives': [
244
+ {'name': name, 'probability': prob}
245
+ for name, prob in ranked_hypotheses[1:]
246
+ ],
247
+ 'statistics': {
248
+ 'mean': mean,
249
+ 'std': std,
250
+ 'entropy': entropy
251
+ }
252
+ }
253
+
254
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
255
+ """Format analysis into readable text."""
256
+ sections = []
257
+
258
+ # Top hypothesis
259
+ sections.append(
260
+ f"Most likely hypothesis: {analysis['top_hypothesis']} "
261
+ f"(probability: {analysis['probability']:.2%})"
262
+ )
263
+
264
+ # Alternative hypotheses
265
+ if analysis['alternatives']:
266
+ sections.append("\nAlternative hypotheses:")
267
+ for alt in analysis['alternatives']:
268
+ sections.append(
269
+ f"- {alt['name']}: {alt['probability']:.2%}"
270
+ )
271
+
272
+ # Statistics
273
+ stats = analysis['statistics']
274
+ sections.append("\nDistribution statistics:")
275
+ sections.append(f"- Mean probability: {stats['mean']:.2%}")
276
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
277
+ sections.append(f"- Entropy: {stats['entropy']:.2f} bits")
278
+
279
+ return "\n".join(sections)
280
+
281
+ def _calculate_confidence(self, posteriors: Dict[str, float]) -> float:
282
+ """Calculate overall confidence score."""
283
+ if not posteriors:
284
+ return 0.0
285
+
286
+ # Base confidence
287
+ confidence = 0.5
288
+
289
+ # Adjust based on probability distribution
290
+ probs = list(posteriors.values())
291
+
292
+ # Strong leading hypothesis increases confidence
293
+ max_prob = max(probs)
294
+ if max_prob > 0.8:
295
+ confidence += 0.3
296
+ elif max_prob > 0.6:
297
+ confidence += 0.2
298
+ elif max_prob > 0.4:
299
+ confidence += 0.1
300
+
301
+ # Low entropy (clear distinction) increases confidence
302
+ entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
303
+ max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
304
+
305
+ if entropy < 0.3 * max_entropy:
306
+ confidence += 0.2
307
+ elif entropy < 0.6 * max_entropy:
308
+ confidence += 0.1
309
+
310
+ return min(confidence, 1.0)
311
+
312
+ def _extract_factors(self, text: str, terms: Set[str]) -> Set[str]:
313
+ """Extract relevant factors from text."""
314
+ return set(word.lower() for word in text.split() if word.lower() in terms)
315
+
316
+ def _generate_alternative_factors(self, terms: Set[str]) -> Set[str]:
317
+ """Generate factors for alternative hypothesis."""
318
+ # Simple approach: use terms not in primary hypothesis
319
+ return set(
320
+ word for word in terms
321
+ if not any(
322
+ similar in word or word in similar
323
+ for similar in terms
324
+ )
325
+ )
reasoning/chain_of_thought.py ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Chain of Thought reasoning implementation with advanced features."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Tuple
5
+ import json
6
+ from dataclasses import dataclass
7
+ from enum import Enum
8
+
9
+ from .base import ReasoningStrategy
10
+
11
+ class ThoughtType(Enum):
12
+ """Types of thoughts in the chain."""
13
+ OBSERVATION = "observation"
14
+ ANALYSIS = "analysis"
15
+ HYPOTHESIS = "hypothesis"
16
+ VERIFICATION = "verification"
17
+ CONCLUSION = "conclusion"
18
+ REFLECTION = "reflection"
19
+ REFINEMENT = "refinement"
20
+
21
+ @dataclass
22
+ class Thought:
23
+ """Represents a single thought in the chain."""
24
+ type: ThoughtType
25
+ content: str
26
+ confidence: float
27
+ evidence: List[str]
28
+ alternatives: List[str]
29
+ next_steps: List[str]
30
+ metadata: Dict[str, Any]
31
+
32
+ class ChainOfThoughtStrategy(ReasoningStrategy):
33
+ """
34
+ Advanced Chain of Thought reasoning implementation with:
35
+ - Hierarchical thought chains
36
+ - Confidence scoring
37
+ - Alternative path exploration
38
+ - Self-reflection and refinement
39
+ - Evidence tracking
40
+ - Meta-learning capabilities
41
+ """
42
+
43
+ def __init__(self,
44
+ min_confidence: float = 0.7,
45
+ parallel_threshold: int = 3,
46
+ learning_rate: float = 0.1,
47
+ strategy_weights: Optional[Dict[str, float]] = None):
48
+ self.min_confidence = min_confidence
49
+ self.parallel_threshold = parallel_threshold
50
+ self.learning_rate = learning_rate
51
+ self.strategy_weights = strategy_weights or {
52
+ "LOCAL_LLM": 0.8,
53
+ "CHAIN_OF_THOUGHT": 0.6,
54
+ "TREE_OF_THOUGHTS": 0.5,
55
+ "META_LEARNING": 0.4
56
+ }
57
+ self.thought_history: List[Thought] = []
58
+
59
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
60
+ """Main reasoning method implementing chain of thought."""
61
+ try:
62
+ # Initialize reasoning chain
63
+ chain = await self._initialize_chain(query, context)
64
+
65
+ # Generate initial thoughts
66
+ thoughts = await self._generate_thoughts(query, context)
67
+
68
+ # Build thought chain
69
+ chain = await self._build_chain(thoughts, context)
70
+
71
+ # Reflect and refine
72
+ if self.enable_reflection:
73
+ chain = await self._reflect_and_refine(chain, context)
74
+
75
+ # Extract conclusion
76
+ conclusion = await self._extract_conclusion(chain, context)
77
+
78
+ # Update thought history
79
+ self.thought_history.extend(chain)
80
+
81
+ return {
82
+ "success": True,
83
+ "answer": conclusion["answer"],
84
+ "confidence": conclusion["confidence"],
85
+ "reasoning_chain": [self._thought_to_dict(t) for t in chain],
86
+ "alternatives": conclusion["alternatives"],
87
+ "evidence": conclusion["evidence"],
88
+ "meta_insights": conclusion["meta_insights"]
89
+ }
90
+ except Exception as e:
91
+ logging.error(f"Error in chain of thought reasoning: {str(e)}")
92
+ return {"success": False, "error": str(e)}
93
+
94
+ async def _initialize_chain(self, query: str, context: Dict[str, Any]) -> List[Thought]:
95
+ """Initialize the thought chain with observations."""
96
+ prompt = f"""
97
+ Initialize chain of thought for query:
98
+ Query: {query}
99
+ Context: {json.dumps(context)}
100
+
101
+ Provide initial observations:
102
+ 1. Key elements in query
103
+ 2. Relevant context factors
104
+ 3. Initial hypotheses
105
+ 4. Potential approaches
106
+
107
+ Format as:
108
+ [O1] Element: ... | Relevance: ... | Confidence: ...
109
+ [O2] Context: ... | Impact: ... | Confidence: ...
110
+ [O3] Hypothesis: ... | Support: ... | Confidence: ...
111
+ [O4] Approach: ... | Rationale: ... | Confidence: ...
112
+ """
113
+
114
+ response = await context["groq_api"].predict(prompt)
115
+ return self._parse_observations(response["answer"])
116
+
117
+ async def _generate_thoughts(self, query: str, context: Dict[str, Any]) -> List[Thought]:
118
+ """Generate candidate thoughts for the chain."""
119
+ prompt = f"""
120
+ Generate thoughts for query analysis:
121
+ Query: {query}
122
+ Context: {json.dumps(context)}
123
+
124
+ For each thought provide:
125
+ 1. [Type]: {" | ".join([t.value for t in ThoughtType])}
126
+ 2. [Content]: Main thought
127
+ 3. [Evidence]: Supporting evidence
128
+ 4. [Alternatives]: Alternative perspectives
129
+ 5. [Next]: Potential next steps
130
+ 6. [Confidence]: 0-1 score
131
+
132
+ Format as:
133
+ [T1]
134
+ Type: ...
135
+ Content: ...
136
+ Evidence: ...
137
+ Alternatives: ...
138
+ Next: ...
139
+ Confidence: ...
140
+ """
141
+
142
+ response = await context["groq_api"].predict(prompt)
143
+ return self._parse_thoughts(response["answer"])
144
+
145
+ async def _build_chain(self, thoughts: List[Thought], context: Dict[str, Any]) -> List[Thought]:
146
+ """Build coherent chain from candidate thoughts."""
147
+ prompt = f"""
148
+ Build coherent thought chain:
149
+ Thoughts: {json.dumps([self._thought_to_dict(t) for t in thoughts])}
150
+ Context: {json.dumps(context)}
151
+
152
+ For each step specify:
153
+ 1. Selected thought
154
+ 2. Reasoning for selection
155
+ 3. Connection to previous
156
+ 4. Expected impact
157
+
158
+ Format as:
159
+ [S1]
160
+ Thought: ...
161
+ Reason: ...
162
+ Connection: ...
163
+ Impact: ...
164
+ """
165
+
166
+ response = await context["groq_api"].predict(prompt)
167
+ return self._parse_chain(response["answer"], thoughts)
168
+
169
+ async def _reflect_and_refine(self, chain: List[Thought], context: Dict[str, Any]) -> List[Thought]:
170
+ """Reflect on and refine the thought chain."""
171
+ prompt = f"""
172
+ Reflect on thought chain:
173
+ Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
174
+ Context: {json.dumps(context)}
175
+
176
+ Analyze for:
177
+ 1. Logical gaps
178
+ 2. Weak assumptions
179
+ 3. Missing evidence
180
+ 4. Alternative perspectives
181
+
182
+ Suggest refinements:
183
+ 1. Additional thoughts
184
+ 2. Modified reasoning
185
+ 3. New connections
186
+ 4. Evidence needs
187
+
188
+ Format as:
189
+ [Analysis]
190
+ Gaps: ...
191
+ Assumptions: ...
192
+ Missing: ...
193
+ Alternatives: ...
194
+
195
+ [Refinements]
196
+ Thoughts: ...
197
+ Reasoning: ...
198
+ Connections: ...
199
+ Evidence: ...
200
+ """
201
+
202
+ response = await context["groq_api"].predict(prompt)
203
+ return self._apply_refinements(chain, response["answer"])
204
+
205
+ async def _extract_conclusion(self, chain: List[Thought], context: Dict[str, Any]) -> Dict[str, Any]:
206
+ """Extract final conclusion from thought chain."""
207
+ prompt = f"""
208
+ Extract conclusion from thought chain:
209
+ Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
210
+ Context: {json.dumps(context)}
211
+
212
+ Provide:
213
+ 1. Main conclusion
214
+ 2. Confidence level
215
+ 3. Supporting evidence
216
+ 4. Alternative conclusions
217
+ 5. Meta-insights gained
218
+ 6. Future considerations
219
+
220
+ Format as:
221
+ [Conclusion]
222
+ Answer: ...
223
+ Confidence: ...
224
+ Evidence: ...
225
+ Alternatives: ...
226
+
227
+ [Meta]
228
+ Insights: ...
229
+ Future: ...
230
+ """
231
+
232
+ response = await context["groq_api"].predict(prompt)
233
+ return self._parse_conclusion(response["answer"])
234
+
235
+ def _parse_observations(self, response: str) -> List[Thought]:
236
+ """Parse initial observations into thoughts."""
237
+ observations = []
238
+ lines = response.split('\n')
239
+
240
+ for line in lines:
241
+ if line.startswith('[O'):
242
+ parts = line.split('|')
243
+ if len(parts) >= 3:
244
+ main_part = parts[0].split(']')[1].strip()
245
+ key, content = main_part.split(':', 1)
246
+
247
+ evidence = [p.strip() for p in parts[1].split(':')[1].strip().split(',')]
248
+
249
+ try:
250
+ confidence = float(parts[2].split(':')[1].strip())
251
+ except:
252
+ confidence = 0.5
253
+
254
+ observations.append(Thought(
255
+ type=ThoughtType.OBSERVATION,
256
+ content=content.strip(),
257
+ confidence=confidence,
258
+ evidence=evidence,
259
+ alternatives=[],
260
+ next_steps=[],
261
+ metadata={"key": key}
262
+ ))
263
+
264
+ return observations
265
+
266
+ def _parse_thoughts(self, response: str) -> List[Thought]:
267
+ """Parse generated thoughts."""
268
+ thoughts = []
269
+ current = None
270
+
271
+ for line in response.split('\n'):
272
+ line = line.strip()
273
+ if not line:
274
+ continue
275
+
276
+ if line.startswith('[T'):
277
+ if current:
278
+ thoughts.append(current)
279
+ current = None
280
+ elif line.startswith('Type:'):
281
+ type_str = line[5:].strip()
282
+ try:
283
+ thought_type = ThoughtType(type_str.lower())
284
+ current = Thought(
285
+ type=thought_type,
286
+ content="",
287
+ confidence=0.0,
288
+ evidence=[],
289
+ alternatives=[],
290
+ next_steps=[],
291
+ metadata={}
292
+ )
293
+ except ValueError:
294
+ logging.warning(f"Invalid thought type: {type_str}")
295
+ elif current:
296
+ if line.startswith('Content:'):
297
+ current.content = line[8:].strip()
298
+ elif line.startswith('Evidence:'):
299
+ current.evidence = [e.strip() for e in line[9:].split(',')]
300
+ elif line.startswith('Alternatives:'):
301
+ current.alternatives = [a.strip() for a in line[13:].split(',')]
302
+ elif line.startswith('Next:'):
303
+ current.next_steps = [n.strip() for n in line[5:].split(',')]
304
+ elif line.startswith('Confidence:'):
305
+ try:
306
+ current.confidence = float(line[11:].strip())
307
+ except:
308
+ current.confidence = 0.5
309
+
310
+ if current:
311
+ thoughts.append(current)
312
+
313
+ return thoughts
314
+
315
+ def _parse_chain(self, response: str, thoughts: List[Thought]) -> List[Thought]:
316
+ """Parse and order thoughts into a chain."""
317
+ chain = []
318
+ thought_map = {self._thought_to_dict(t)["content"]: t for t in thoughts}
319
+
320
+ for line in response.split('\n'):
321
+ if line.startswith('Thought:'):
322
+ content = line[8:].strip()
323
+ if content in thought_map:
324
+ chain.append(thought_map[content])
325
+
326
+ return chain
327
+
328
+ def _apply_refinements(self, chain: List[Thought], response: str) -> List[Thought]:
329
+ """Apply refinements to thought chain."""
330
+ refined_chain = chain.copy()
331
+
332
+ # Parse refinements
333
+ sections = response.split('[')
334
+ for section in sections:
335
+ if section.startswith('Refinements]'):
336
+ lines = section.split('\n')[1:]
337
+ for line in lines:
338
+ if line.startswith('Thoughts:'):
339
+ new_thoughts = self._parse_refinement_thoughts(line[9:])
340
+ refined_chain.extend(new_thoughts)
341
+
342
+ return refined_chain
343
+
344
+ def _parse_refinement_thoughts(self, refinements: str) -> List[Thought]:
345
+ """Parse refinement thoughts."""
346
+ thoughts = []
347
+ for refinement in refinements.split(';'):
348
+ if refinement.strip():
349
+ thoughts.append(Thought(
350
+ type=ThoughtType.REFINEMENT,
351
+ content=refinement.strip(),
352
+ confidence=0.8, # Refinements typically have high confidence
353
+ evidence=[],
354
+ alternatives=[],
355
+ next_steps=[],
356
+ metadata={"refined": True}
357
+ ))
358
+ return thoughts
359
+
360
+ def _parse_conclusion(self, response: str) -> Dict[str, Any]:
361
+ """Parse final conclusion."""
362
+ conclusion = {
363
+ "answer": "",
364
+ "confidence": 0.0,
365
+ "evidence": [],
366
+ "alternatives": [],
367
+ "meta_insights": [],
368
+ "future_considerations": []
369
+ }
370
+
371
+ sections = response.split('[')
372
+ for section in sections:
373
+ if section.startswith('Conclusion]'):
374
+ lines = section.split('\n')[1:]
375
+ for line in lines:
376
+ if line.startswith('Answer:'):
377
+ conclusion["answer"] = line[7:].strip()
378
+ elif line.startswith('Confidence:'):
379
+ try:
380
+ conclusion["confidence"] = float(line[11:].strip())
381
+ except:
382
+ conclusion["confidence"] = 0.5
383
+ elif line.startswith('Evidence:'):
384
+ conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
385
+ elif line.startswith('Alternatives:'):
386
+ conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
387
+ elif section.startswith('Meta]'):
388
+ lines = section.split('\n')[1:]
389
+ for line in lines:
390
+ if line.startswith('Insights:'):
391
+ conclusion["meta_insights"] = [i.strip() for i in line[9:].split(',')]
392
+ elif line.startswith('Future:'):
393
+ conclusion["future_considerations"] = [f.strip() for f in line[7:].split(',')]
394
+
395
+ return conclusion
396
+
397
+ def _thought_to_dict(self, thought: Thought) -> Dict[str, Any]:
398
+ """Convert thought to dictionary for serialization."""
399
+ return {
400
+ "type": thought.type.value,
401
+ "content": thought.content,
402
+ "confidence": thought.confidence,
403
+ "evidence": thought.evidence,
404
+ "alternatives": thought.alternatives,
405
+ "next_steps": thought.next_steps,
406
+ "metadata": thought.metadata
407
+ }
408
+
409
+ def get_thought_history(self) -> List[Dict[str, Any]]:
410
+ """Get the history of all thoughts processed."""
411
+ return [self._thought_to_dict(t) for t in self.thought_history]
412
+
413
+ def clear_history(self) -> None:
414
+ """Clear thought history."""
415
+ self.thought_history = []
reasoning/coordination.py ADDED
@@ -0,0 +1,525 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced strategy coordination patterns for the unified reasoning engine."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+ from .unified_engine import StrategyType, StrategyResult, UnifiedResult
14
+
15
+ class CoordinationPattern(Enum):
16
+ """Types of strategy coordination patterns."""
17
+ PIPELINE = "pipeline"
18
+ PARALLEL = "parallel"
19
+ HIERARCHICAL = "hierarchical"
20
+ FEEDBACK = "feedback"
21
+ ADAPTIVE = "adaptive"
22
+ ENSEMBLE = "ensemble"
23
+
24
+ class CoordinationPhase(Enum):
25
+ """Phases in strategy coordination."""
26
+ INITIALIZATION = "initialization"
27
+ EXECUTION = "execution"
28
+ SYNCHRONIZATION = "synchronization"
29
+ ADAPTATION = "adaptation"
30
+ COMPLETION = "completion"
31
+
32
+ @dataclass
33
+ class CoordinationState:
34
+ """State of strategy coordination."""
35
+ pattern: CoordinationPattern
36
+ active_strategies: Dict[StrategyType, bool]
37
+ phase: CoordinationPhase
38
+ shared_context: Dict[str, Any]
39
+ synchronization_points: List[str]
40
+ adaptation_history: List[Dict[str, Any]]
41
+ metadata: Dict[str, Any] = field(default_factory=dict)
42
+
43
+ @dataclass
44
+ class StrategyInteraction:
45
+ """Interaction between strategies."""
46
+ source: StrategyType
47
+ target: StrategyType
48
+ interaction_type: str
49
+ data: Dict[str, Any]
50
+ timestamp: datetime = field(default_factory=datetime.now)
51
+
52
+ class StrategyCoordinator:
53
+ """
54
+ Advanced strategy coordinator that:
55
+ 1. Manages strategy interactions
56
+ 2. Implements coordination patterns
57
+ 3. Handles state synchronization
58
+ 4. Adapts coordination dynamically
59
+ 5. Optimizes strategy combinations
60
+ """
61
+
62
+ def __init__(self,
63
+ strategies: Dict[StrategyType, ReasoningStrategy],
64
+ learning_rate: float = 0.1):
65
+ self.strategies = strategies
66
+ self.learning_rate = learning_rate
67
+
68
+ # Coordination state
69
+ self.states: Dict[str, CoordinationState] = {}
70
+ self.interactions: List[StrategyInteraction] = []
71
+
72
+ # Pattern performance
73
+ self.pattern_performance: Dict[CoordinationPattern, List[float]] = defaultdict(list)
74
+ self.pattern_weights: Dict[CoordinationPattern, float] = {
75
+ pattern: 1.0 for pattern in CoordinationPattern
76
+ }
77
+
78
+ async def coordinate(self,
79
+ query: str,
80
+ context: Dict[str, Any],
81
+ pattern: Optional[CoordinationPattern] = None) -> Dict[str, Any]:
82
+ """Coordinate strategy execution using specified pattern."""
83
+ try:
84
+ # Select pattern if not specified
85
+ if not pattern:
86
+ pattern = await self._select_pattern(query, context)
87
+
88
+ # Initialize coordination
89
+ state = await self._initialize_coordination(pattern, context)
90
+
91
+ # Execute coordination pattern
92
+ if pattern == CoordinationPattern.PIPELINE:
93
+ result = await self._coordinate_pipeline(query, context, state)
94
+ elif pattern == CoordinationPattern.PARALLEL:
95
+ result = await self._coordinate_parallel(query, context, state)
96
+ elif pattern == CoordinationPattern.HIERARCHICAL:
97
+ result = await self._coordinate_hierarchical(query, context, state)
98
+ elif pattern == CoordinationPattern.FEEDBACK:
99
+ result = await self._coordinate_feedback(query, context, state)
100
+ elif pattern == CoordinationPattern.ADAPTIVE:
101
+ result = await self._coordinate_adaptive(query, context, state)
102
+ elif pattern == CoordinationPattern.ENSEMBLE:
103
+ result = await self._coordinate_ensemble(query, context, state)
104
+ else:
105
+ raise ValueError(f"Unsupported coordination pattern: {pattern}")
106
+
107
+ # Update performance metrics
108
+ self._update_pattern_performance(pattern, result)
109
+
110
+ return result
111
+
112
+ except Exception as e:
113
+ logging.error(f"Error in strategy coordination: {str(e)}")
114
+ return {
115
+ "success": False,
116
+ "error": str(e),
117
+ "pattern": pattern.value if pattern else None
118
+ }
119
+
120
+ async def _select_pattern(self, query: str, context: Dict[str, Any]) -> CoordinationPattern:
121
+ """Select appropriate coordination pattern."""
122
+ prompt = f"""
123
+ Select coordination pattern:
124
+ Query: {query}
125
+ Context: {json.dumps(context)}
126
+
127
+ Consider:
128
+ 1. Task complexity and type
129
+ 2. Strategy dependencies
130
+ 3. Resource constraints
131
+ 4. Performance history
132
+ 5. Adaptation needs
133
+
134
+ Format as:
135
+ [Selection]
136
+ Pattern: ...
137
+ Rationale: ...
138
+ Confidence: ...
139
+ """
140
+
141
+ response = await context["groq_api"].predict(prompt)
142
+ selection = self._parse_pattern_selection(response["answer"])
143
+
144
+ # Weight by performance history
145
+ weighted_patterns = {
146
+ pattern: self.pattern_weights[pattern] * selection.get(pattern.value, 0.0)
147
+ for pattern in CoordinationPattern
148
+ }
149
+
150
+ return max(weighted_patterns.items(), key=lambda x: x[1])[0]
151
+
152
+ async def _coordinate_pipeline(self,
153
+ query: str,
154
+ context: Dict[str, Any],
155
+ state: CoordinationState) -> Dict[str, Any]:
156
+ """Coordinate strategies in pipeline pattern."""
157
+ results = []
158
+ current_context = context.copy()
159
+
160
+ # Determine optimal order
161
+ strategy_order = await self._determine_pipeline_order(query, context)
162
+
163
+ for strategy_type in strategy_order:
164
+ try:
165
+ # Execute strategy
166
+ strategy = self.strategies[strategy_type]
167
+ result = await strategy.reason(query, current_context)
168
+
169
+ # Update context with result
170
+ current_context.update({
171
+ "previous_result": result,
172
+ "pipeline_position": len(results)
173
+ })
174
+
175
+ results.append(StrategyResult(
176
+ strategy_type=strategy_type,
177
+ success=result.get("success", False),
178
+ answer=result.get("answer"),
179
+ confidence=result.get("confidence", 0.0),
180
+ reasoning_trace=result.get("reasoning_trace", []),
181
+ metadata=result.get("metadata", {}),
182
+ performance_metrics=result.get("performance_metrics", {})
183
+ ))
184
+
185
+ # Record interaction
186
+ self._record_interaction(
187
+ source=strategy_type,
188
+ target=strategy_order[len(results)] if len(results) < len(strategy_order) else None,
189
+ interaction_type="pipeline_transfer",
190
+ data={"result": result}
191
+ )
192
+
193
+ except Exception as e:
194
+ logging.error(f"Error in pipeline strategy {strategy_type}: {str(e)}")
195
+
196
+ return {
197
+ "success": any(r.success for r in results),
198
+ "results": results,
199
+ "pattern": CoordinationPattern.PIPELINE.value,
200
+ "metrics": {
201
+ "total_steps": len(results),
202
+ "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
203
+ }
204
+ }
205
+
206
+ async def _coordinate_parallel(self,
207
+ query: str,
208
+ context: Dict[str, Any],
209
+ state: CoordinationState) -> Dict[str, Any]:
210
+ """Coordinate strategies in parallel pattern."""
211
+ async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
212
+ try:
213
+ strategy = self.strategies[strategy_type]
214
+ result = await strategy.reason(query, context)
215
+
216
+ return StrategyResult(
217
+ strategy_type=strategy_type,
218
+ success=result.get("success", False),
219
+ answer=result.get("answer"),
220
+ confidence=result.get("confidence", 0.0),
221
+ reasoning_trace=result.get("reasoning_trace", []),
222
+ metadata=result.get("metadata", {}),
223
+ performance_metrics=result.get("performance_metrics", {})
224
+ )
225
+ except Exception as e:
226
+ logging.error(f"Error in parallel strategy {strategy_type}: {str(e)}")
227
+ return StrategyResult(
228
+ strategy_type=strategy_type,
229
+ success=False,
230
+ answer=None,
231
+ confidence=0.0,
232
+ reasoning_trace=[{"error": str(e)}],
233
+ metadata={},
234
+ performance_metrics={}
235
+ )
236
+
237
+ # Execute strategies in parallel
238
+ tasks = [execute_strategy(strategy_type)
239
+ for strategy_type in state.active_strategies
240
+ if state.active_strategies[strategy_type]]
241
+
242
+ results = await asyncio.gather(*tasks)
243
+
244
+ # Synthesize results
245
+ synthesis = await self._synthesize_parallel_results(results, context)
246
+
247
+ return {
248
+ "success": synthesis.get("success", False),
249
+ "results": results,
250
+ "synthesis": synthesis,
251
+ "pattern": CoordinationPattern.PARALLEL.value,
252
+ "metrics": {
253
+ "total_strategies": len(results),
254
+ "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
255
+ }
256
+ }
257
+
258
+ async def _coordinate_hierarchical(self,
259
+ query: str,
260
+ context: Dict[str, Any],
261
+ state: CoordinationState) -> Dict[str, Any]:
262
+ """Coordinate strategies in hierarchical pattern."""
263
+ # Build strategy hierarchy
264
+ hierarchy = await self._build_strategy_hierarchy(query, context)
265
+ results = {}
266
+
267
+ async def execute_level(level_strategies: List[StrategyType],
268
+ level_context: Dict[str, Any]) -> List[StrategyResult]:
269
+ tasks = []
270
+ for strategy_type in level_strategies:
271
+ if strategy_type in state.active_strategies and state.active_strategies[strategy_type]:
272
+ strategy = self.strategies[strategy_type]
273
+ tasks.append(strategy.reason(query, level_context))
274
+
275
+ level_results = await asyncio.gather(*tasks)
276
+ return [
277
+ StrategyResult(
278
+ strategy_type=strategy_type,
279
+ success=result.get("success", False),
280
+ answer=result.get("answer"),
281
+ confidence=result.get("confidence", 0.0),
282
+ reasoning_trace=result.get("reasoning_trace", []),
283
+ metadata=result.get("metadata", {}),
284
+ performance_metrics=result.get("performance_metrics", {})
285
+ )
286
+ for strategy_type, result in zip(level_strategies, level_results)
287
+ ]
288
+
289
+ # Execute hierarchy levels
290
+ current_context = context.copy()
291
+ for level, level_strategies in enumerate(hierarchy):
292
+ results[level] = await execute_level(level_strategies, current_context)
293
+
294
+ # Update context for next level
295
+ current_context.update({
296
+ "previous_level_results": results[level],
297
+ "hierarchy_level": level
298
+ })
299
+
300
+ return {
301
+ "success": any(any(r.success for r in level_results)
302
+ for level_results in results.values()),
303
+ "results": results,
304
+ "hierarchy": hierarchy,
305
+ "pattern": CoordinationPattern.HIERARCHICAL.value,
306
+ "metrics": {
307
+ "total_levels": len(hierarchy),
308
+ "level_success_rates": {
309
+ level: sum(1 for r in results[level] if r.success) / len(results[level])
310
+ for level in results if results[level]
311
+ }
312
+ }
313
+ }
314
+
315
+ async def _coordinate_feedback(self,
316
+ query: str,
317
+ context: Dict[str, Any],
318
+ state: CoordinationState) -> Dict[str, Any]:
319
+ """Coordinate strategies with feedback loops."""
320
+ results = []
321
+ feedback_history = []
322
+ current_context = context.copy()
323
+
324
+ max_iterations = 5 # Prevent infinite loops
325
+ iteration = 0
326
+
327
+ while iteration < max_iterations:
328
+ iteration += 1
329
+
330
+ # Execute strategies
331
+ iteration_results = []
332
+ for strategy_type in state.active_strategies:
333
+ if state.active_strategies[strategy_type]:
334
+ try:
335
+ strategy = self.strategies[strategy_type]
336
+ result = await strategy.reason(query, current_context)
337
+
338
+ strategy_result = StrategyResult(
339
+ strategy_type=strategy_type,
340
+ success=result.get("success", False),
341
+ answer=result.get("answer"),
342
+ confidence=result.get("confidence", 0.0),
343
+ reasoning_trace=result.get("reasoning_trace", []),
344
+ metadata=result.get("metadata", {}),
345
+ performance_metrics=result.get("performance_metrics", {})
346
+ )
347
+
348
+ iteration_results.append(strategy_result)
349
+
350
+ except Exception as e:
351
+ logging.error(f"Error in feedback strategy {strategy_type}: {str(e)}")
352
+
353
+ results.append(iteration_results)
354
+
355
+ # Generate feedback
356
+ feedback = await self._generate_feedback(iteration_results, current_context)
357
+ feedback_history.append(feedback)
358
+
359
+ # Check termination condition
360
+ if self._should_terminate_feedback(feedback, iteration_results):
361
+ break
362
+
363
+ # Update context with feedback
364
+ current_context.update({
365
+ "previous_results": iteration_results,
366
+ "feedback": feedback,
367
+ "iteration": iteration
368
+ })
369
+
370
+ return {
371
+ "success": any(any(r.success for r in iteration_results)
372
+ for iteration_results in results),
373
+ "results": results,
374
+ "feedback_history": feedback_history,
375
+ "pattern": CoordinationPattern.FEEDBACK.value,
376
+ "metrics": {
377
+ "total_iterations": iteration,
378
+ "feedback_impact": self._calculate_feedback_impact(results, feedback_history)
379
+ }
380
+ }
381
+
382
+ async def _coordinate_adaptive(self,
383
+ query: str,
384
+ context: Dict[str, Any],
385
+ state: CoordinationState) -> Dict[str, Any]:
386
+ """Coordinate strategies with adaptive selection."""
387
+ results = []
388
+ adaptations = []
389
+ current_context = context.copy()
390
+
391
+ while len(results) < len(state.active_strategies):
392
+ # Select next strategy
393
+ next_strategy = await self._select_next_strategy(
394
+ results, state.active_strategies, current_context)
395
+
396
+ if not next_strategy:
397
+ break
398
+
399
+ try:
400
+ # Execute strategy
401
+ strategy = self.strategies[next_strategy]
402
+ result = await strategy.reason(query, current_context)
403
+
404
+ strategy_result = StrategyResult(
405
+ strategy_type=next_strategy,
406
+ success=result.get("success", False),
407
+ answer=result.get("answer"),
408
+ confidence=result.get("confidence", 0.0),
409
+ reasoning_trace=result.get("reasoning_trace", []),
410
+ metadata=result.get("metadata", {}),
411
+ performance_metrics=result.get("performance_metrics", {})
412
+ )
413
+
414
+ results.append(strategy_result)
415
+
416
+ # Adapt strategy selection
417
+ adaptation = await self._adapt_strategy_selection(
418
+ strategy_result, current_context)
419
+ adaptations.append(adaptation)
420
+
421
+ # Update context
422
+ current_context.update({
423
+ "previous_results": results,
424
+ "adaptations": adaptations,
425
+ "current_strategy": next_strategy
426
+ })
427
+
428
+ except Exception as e:
429
+ logging.error(f"Error in adaptive strategy {next_strategy}: {str(e)}")
430
+
431
+ return {
432
+ "success": any(r.success for r in results),
433
+ "results": results,
434
+ "adaptations": adaptations,
435
+ "pattern": CoordinationPattern.ADAPTIVE.value,
436
+ "metrics": {
437
+ "total_strategies": len(results),
438
+ "adaptation_impact": self._calculate_adaptation_impact(results, adaptations)
439
+ }
440
+ }
441
+
442
+ async def _coordinate_ensemble(self,
443
+ query: str,
444
+ context: Dict[str, Any],
445
+ state: CoordinationState) -> Dict[str, Any]:
446
+ """Coordinate strategies as an ensemble."""
447
+ # Execute all strategies
448
+ results = []
449
+ for strategy_type in state.active_strategies:
450
+ if state.active_strategies[strategy_type]:
451
+ try:
452
+ strategy = self.strategies[strategy_type]
453
+ result = await strategy.reason(query, context)
454
+
455
+ strategy_result = StrategyResult(
456
+ strategy_type=strategy_type,
457
+ success=result.get("success", False),
458
+ answer=result.get("answer"),
459
+ confidence=result.get("confidence", 0.0),
460
+ reasoning_trace=result.get("reasoning_trace", []),
461
+ metadata=result.get("metadata", {}),
462
+ performance_metrics=result.get("performance_metrics", {})
463
+ )
464
+
465
+ results.append(strategy_result)
466
+
467
+ except Exception as e:
468
+ logging.error(f"Error in ensemble strategy {strategy_type}: {str(e)}")
469
+
470
+ # Combine results using ensemble methods
471
+ ensemble_result = await self._combine_ensemble_results(results, context)
472
+
473
+ return {
474
+ "success": ensemble_result.get("success", False),
475
+ "results": results,
476
+ "ensemble_result": ensemble_result,
477
+ "pattern": CoordinationPattern.ENSEMBLE.value,
478
+ "metrics": {
479
+ "total_members": len(results),
480
+ "ensemble_confidence": ensemble_result.get("confidence", 0.0)
481
+ }
482
+ }
483
+
484
+ def _record_interaction(self,
485
+ source: StrategyType,
486
+ target: Optional[StrategyType],
487
+ interaction_type: str,
488
+ data: Dict[str, Any]):
489
+ """Record strategy interaction."""
490
+ self.interactions.append(StrategyInteraction(
491
+ source=source,
492
+ target=target,
493
+ interaction_type=interaction_type,
494
+ data=data
495
+ ))
496
+
497
+ def _update_pattern_performance(self, pattern: CoordinationPattern, result: Dict[str, Any]):
498
+ """Update pattern performance metrics."""
499
+ success_rate = result["metrics"].get("success_rate", 0.0)
500
+ self.pattern_performance[pattern].append(success_rate)
501
+
502
+ # Update weights using exponential moving average
503
+ current_weight = self.pattern_weights[pattern]
504
+ self.pattern_weights[pattern] = (
505
+ (1 - self.learning_rate) * current_weight +
506
+ self.learning_rate * success_rate
507
+ )
508
+
509
+ def get_performance_metrics(self) -> Dict[str, Any]:
510
+ """Get comprehensive performance metrics."""
511
+ return {
512
+ "pattern_weights": dict(self.pattern_weights),
513
+ "average_performance": {
514
+ pattern.value: sum(scores) / len(scores) if scores else 0
515
+ for pattern, scores in self.pattern_performance.items()
516
+ },
517
+ "interaction_counts": defaultdict(int, {
518
+ interaction.interaction_type: 1
519
+ for interaction in self.interactions
520
+ }),
521
+ "active_patterns": [
522
+ pattern.value for pattern, weight in self.pattern_weights.items()
523
+ if weight > 0.5
524
+ ]
525
+ }
reasoning/emergent.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Emergent Reasoning Module
3
+ ------------------------
4
+ Implements emergent reasoning capabilities that arise from the interaction
5
+ of multiple reasoning strategies and patterns.
6
+ """
7
+
8
+ from typing import Dict, Any, List, Optional
9
+ from .base import ReasoningStrategy
10
+ from .meta_learning import MetaLearningStrategy
11
+ from .chain_of_thought import ChainOfThoughtStrategy
12
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
13
+
14
+ class EmergentReasoning(ReasoningStrategy):
15
+ """
16
+ A reasoning strategy that combines multiple approaches to discover
17
+ emergent patterns and solutions.
18
+ """
19
+
20
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
21
+ """Initialize emergent reasoning with component strategies."""
22
+ super().__init__()
23
+ self.config = config or {}
24
+
25
+ # Standard reasoning parameters
26
+ self.min_confidence = self.config.get('min_confidence', 0.7)
27
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
28
+ self.learning_rate = self.config.get('learning_rate', 0.1)
29
+ self.strategy_weights = self.config.get('strategy_weights', {
30
+ "LOCAL_LLM": 0.8,
31
+ "CHAIN_OF_THOUGHT": 0.6,
32
+ "TREE_OF_THOUGHTS": 0.5,
33
+ "META_LEARNING": 0.4
34
+ })
35
+
36
+ # Initialize component strategies with shared config
37
+ strategy_config = {
38
+ 'min_confidence': self.min_confidence,
39
+ 'parallel_threshold': self.parallel_threshold,
40
+ 'learning_rate': self.learning_rate,
41
+ 'strategy_weights': self.strategy_weights
42
+ }
43
+
44
+ self.meta_learner = MetaLearningStrategy(strategy_config)
45
+ self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
46
+ self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
47
+
48
+ # Configure weights for strategy combination
49
+ self.weights = self.config.get('combination_weights', {
50
+ 'meta': 0.4,
51
+ 'chain': 0.3,
52
+ 'tree': 0.3
53
+ })
54
+
55
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
56
+ """
57
+ Apply emergent reasoning by combining multiple strategies and
58
+ identifying patterns that emerge from their interaction.
59
+
60
+ Args:
61
+ query: The input query to reason about
62
+ context: Additional context and parameters
63
+
64
+ Returns:
65
+ Dict containing reasoning results and confidence scores
66
+ """
67
+ try:
68
+ # Get results from each strategy
69
+ meta_result = await self.meta_learner.reason(query, context)
70
+ chain_result = await self.chain_of_thought.reason(query, context)
71
+ tree_result = await self.tree_of_thoughts.reason(query, context)
72
+
73
+ # Combine results with weighted averaging
74
+ combined_answer = self._combine_results([
75
+ (meta_result.get('answer', ''), self.weights['meta']),
76
+ (chain_result.get('answer', ''), self.weights['chain']),
77
+ (tree_result.get('answer', ''), self.weights['tree'])
78
+ ])
79
+
80
+ # Calculate overall confidence
81
+ confidence = (
82
+ meta_result.get('confidence', 0) * self.weights['meta'] +
83
+ chain_result.get('confidence', 0) * self.weights['chain'] +
84
+ tree_result.get('confidence', 0) * self.weights['tree']
85
+ )
86
+
87
+ return {
88
+ 'answer': combined_answer,
89
+ 'confidence': confidence,
90
+ 'reasoning_path': {
91
+ 'meta': meta_result.get('reasoning_path'),
92
+ 'chain': chain_result.get('reasoning_path'),
93
+ 'tree': tree_result.get('reasoning_path')
94
+ },
95
+ 'emergent_patterns': self._identify_patterns([
96
+ meta_result, chain_result, tree_result
97
+ ])
98
+ }
99
+
100
+ except Exception as e:
101
+ return {
102
+ 'error': f"Emergent reasoning failed: {str(e)}",
103
+ 'confidence': 0.0
104
+ }
105
+
106
+ def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str:
107
+ """Combine multiple reasoning results with weights."""
108
+ if not weighted_results:
109
+ return ""
110
+
111
+ # For now, use the highest weighted result
112
+ return max(weighted_results, key=lambda x: x[1])[0]
113
+
114
+ def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]:
115
+ """Identify common patterns across different reasoning strategies."""
116
+ patterns = []
117
+
118
+ # Extract common themes or conclusions
119
+ answers = [r.get('answer', '') for r in results if r.get('answer')]
120
+ if len(set(answers)) == 1:
121
+ patterns.append("All strategies reached the same conclusion")
122
+ elif len(set(answers)) < len(answers):
123
+ patterns.append("Some strategies converged on similar conclusions")
124
+
125
+ # Look for common confidence patterns
126
+ confidences = [r.get('confidence', 0) for r in results]
127
+ avg_confidence = sum(confidences) / len(confidences) if confidences else 0
128
+ if avg_confidence > 0.8:
129
+ patterns.append("High confidence across all strategies")
130
+ elif avg_confidence < 0.3:
131
+ patterns.append("Low confidence across strategies")
132
+
133
+ return patterns
reasoning/groq_strategy.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Groq API integration with streaming and optimizations."""
2
+
3
+ import os
4
+ import logging
5
+ import asyncio
6
+ from typing import Dict, Any, Optional, List, AsyncGenerator, Union
7
+ import groq
8
+ from datetime import datetime
9
+ import json
10
+ from dataclasses import dataclass
11
+ from concurrent.futures import ThreadPoolExecutor
12
+
13
+ from .base import ReasoningStrategy, StrategyResult
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+ @dataclass
18
+ class GroqConfig:
19
+ """Configuration for Groq models."""
20
+ model_name: str
21
+ max_tokens: int
22
+ temperature: float
23
+ top_p: float
24
+ top_k: Optional[int] = None
25
+ presence_penalty: float = 0.0
26
+ frequency_penalty: float = 0.0
27
+ stop_sequences: Optional[List[str]] = None
28
+ chunk_size: int = 1024
29
+ retry_attempts: int = 3
30
+ retry_delay: float = 1.0
31
+
32
+ class GroqStrategy(ReasoningStrategy):
33
+ """Enhanced reasoning strategy using Groq's API with streaming and optimizations."""
34
+
35
+ def __init__(self, api_key: Optional[str] = None):
36
+ """Initialize Groq strategy."""
37
+ super().__init__()
38
+ self.api_key = api_key or os.getenv("GROQ_API_KEY")
39
+ if not self.api_key:
40
+ raise ValueError("GROQ_API_KEY must be set")
41
+
42
+ # Initialize Groq client with optimized settings
43
+ self.client = groq.Groq(
44
+ api_key=self.api_key,
45
+ timeout=30,
46
+ max_retries=3
47
+ )
48
+
49
+ # Optimized model configurations
50
+ self.model_configs = {
51
+ "mixtral": GroqConfig(
52
+ model_name="mixtral-8x7b-32768",
53
+ max_tokens=32768,
54
+ temperature=0.7,
55
+ top_p=0.9,
56
+ top_k=40,
57
+ presence_penalty=0.1,
58
+ frequency_penalty=0.1,
59
+ chunk_size=4096
60
+ ),
61
+ "llama": GroqConfig(
62
+ model_name="llama2-70b-4096",
63
+ max_tokens=4096,
64
+ temperature=0.8,
65
+ top_p=0.9,
66
+ top_k=50,
67
+ presence_penalty=0.2,
68
+ frequency_penalty=0.2,
69
+ chunk_size=1024
70
+ )
71
+ }
72
+
73
+ # Initialize thread pool for parallel processing
74
+ self.executor = ThreadPoolExecutor(max_workers=4)
75
+
76
+ # Response cache
77
+ self.cache: Dict[str, Any] = {}
78
+ self.cache_ttl = 3600 # 1 hour
79
+
80
+ async def reason_stream(
81
+ self,
82
+ query: str,
83
+ context: Dict[str, Any],
84
+ model: str = "mixtral",
85
+ chunk_handler: Optional[callable] = None
86
+ ) -> AsyncGenerator[str, None]:
87
+ """
88
+ Stream reasoning results from Groq's API.
89
+
90
+ Args:
91
+ query: The query to reason about
92
+ context: Additional context
93
+ model: Model to use ('mixtral' or 'llama')
94
+ chunk_handler: Optional callback for handling chunks
95
+ """
96
+ config = self.model_configs[model]
97
+ messages = self._prepare_messages(query, context)
98
+
99
+ try:
100
+ stream = await self.client.chat.completions.create(
101
+ model=config.model_name,
102
+ messages=messages,
103
+ temperature=config.temperature,
104
+ top_p=config.top_p,
105
+ top_k=config.top_k,
106
+ presence_penalty=config.presence_penalty,
107
+ frequency_penalty=config.frequency_penalty,
108
+ max_tokens=config.max_tokens,
109
+ stream=True
110
+ )
111
+
112
+ collected_content = []
113
+ async for chunk in stream:
114
+ if chunk.choices[0].delta.content:
115
+ content = chunk.choices[0].delta.content
116
+ collected_content.append(content)
117
+
118
+ if chunk_handler:
119
+ await chunk_handler(content)
120
+
121
+ yield content
122
+
123
+ # Cache the complete response
124
+ cache_key = self._generate_cache_key(query, context, model)
125
+ self.cache[cache_key] = {
126
+ "content": "".join(collected_content),
127
+ "timestamp": datetime.now()
128
+ }
129
+
130
+ except Exception as e:
131
+ logger.error(f"Groq streaming error: {str(e)}")
132
+ yield f"Error: {str(e)}"
133
+
134
+ async def reason(
135
+ self,
136
+ query: str,
137
+ context: Dict[str, Any],
138
+ model: str = "mixtral"
139
+ ) -> StrategyResult:
140
+ """
141
+ Enhanced reasoning with Groq's API including optimizations.
142
+
143
+ Args:
144
+ query: The query to reason about
145
+ context: Additional context
146
+ model: Model to use ('mixtral' or 'llama')
147
+ """
148
+ # Check cache first
149
+ cache_key = self._generate_cache_key(query, context, model)
150
+ cached_response = self._get_from_cache(cache_key)
151
+ if cached_response:
152
+ return self._create_result(cached_response, model, from_cache=True)
153
+
154
+ config = self.model_configs[model]
155
+ messages = self._prepare_messages(query, context)
156
+
157
+ # Implement retry logic with exponential backoff
158
+ for attempt in range(config.retry_attempts):
159
+ try:
160
+ start_time = datetime.now()
161
+
162
+ # Make API call with optimized parameters
163
+ response = await self.client.chat.completions.create(
164
+ model=config.model_name,
165
+ messages=messages,
166
+ temperature=config.temperature,
167
+ top_p=config.top_p,
168
+ top_k=config.top_k,
169
+ presence_penalty=config.presence_penalty,
170
+ frequency_penalty=config.frequency_penalty,
171
+ max_tokens=config.max_tokens,
172
+ stream=False
173
+ )
174
+
175
+ end_time = datetime.now()
176
+
177
+ # Cache successful response
178
+ self.cache[cache_key] = {
179
+ "content": response.choices[0].message.content,
180
+ "timestamp": datetime.now()
181
+ }
182
+
183
+ return self._create_result(response, model)
184
+
185
+ except Exception as e:
186
+ delay = config.retry_delay * (2 ** attempt)
187
+ logger.warning(f"Groq API attempt {attempt + 1} failed: {str(e)}")
188
+ if attempt < config.retry_attempts - 1:
189
+ await asyncio.sleep(delay)
190
+ else:
191
+ logger.error(f"All Groq API attempts failed: {str(e)}")
192
+ return self._create_error_result(str(e))
193
+
194
+ def _create_result(
195
+ self,
196
+ response: Union[Dict, Any],
197
+ model: str,
198
+ from_cache: bool = False
199
+ ) -> StrategyResult:
200
+ """Create a strategy result from response."""
201
+ if from_cache:
202
+ answer = response["content"]
203
+ confidence = 0.9 # Higher confidence for cached responses
204
+ performance_metrics = {
205
+ "from_cache": True,
206
+ "cache_age": (datetime.now() - response["timestamp"]).total_seconds()
207
+ }
208
+ else:
209
+ answer = response.choices[0].message.content
210
+ confidence = self._calculate_confidence(response)
211
+ performance_metrics = {
212
+ "latency": response.usage.total_tokens / 1000, # tokens per second
213
+ "tokens_used": response.usage.total_tokens,
214
+ "prompt_tokens": response.usage.prompt_tokens,
215
+ "completion_tokens": response.usage.completion_tokens,
216
+ "model": self.model_configs[model].model_name
217
+ }
218
+
219
+ return StrategyResult(
220
+ strategy_type="groq",
221
+ success=True,
222
+ answer=answer,
223
+ confidence=confidence,
224
+ reasoning_trace=[{
225
+ "step": "groq_api_call",
226
+ "model": self.model_configs[model].model_name,
227
+ "timestamp": datetime.now().isoformat(),
228
+ "metrics": performance_metrics
229
+ }],
230
+ metadata={
231
+ "model": self.model_configs[model].model_name,
232
+ "from_cache": from_cache
233
+ },
234
+ performance_metrics=performance_metrics
235
+ )
236
+
237
+ def _create_error_result(self, error: str) -> StrategyResult:
238
+ """Create an error result."""
239
+ return StrategyResult(
240
+ strategy_type="groq",
241
+ success=False,
242
+ answer=None,
243
+ confidence=0.0,
244
+ reasoning_trace=[{
245
+ "step": "groq_api_error",
246
+ "error": error,
247
+ "timestamp": datetime.now().isoformat()
248
+ }],
249
+ metadata={"error": error},
250
+ performance_metrics={}
251
+ )
252
+
253
+ def _generate_cache_key(
254
+ self,
255
+ query: str,
256
+ context: Dict[str, Any],
257
+ model: str
258
+ ) -> str:
259
+ """Generate a cache key."""
260
+ key_data = {
261
+ "query": query,
262
+ "context": context,
263
+ "model": model
264
+ }
265
+ return json.dumps(key_data, sort_keys=True)
266
+
267
+ def _get_from_cache(self, cache_key: str) -> Optional[Dict]:
268
+ """Get response from cache if valid."""
269
+ if cache_key in self.cache:
270
+ cached = self.cache[cache_key]
271
+ age = (datetime.now() - cached["timestamp"]).total_seconds()
272
+ if age < self.cache_ttl:
273
+ return cached
274
+ else:
275
+ del self.cache[cache_key]
276
+ return None
277
+
278
+ def _calculate_confidence(self, response: Any) -> float:
279
+ """Calculate confidence score from response."""
280
+ confidence = 0.8 # Base confidence
281
+
282
+ # Adjust based on token usage and model behavior
283
+ if hasattr(response, 'usage'):
284
+ completion_tokens = response.usage.completion_tokens
285
+ total_tokens = response.usage.total_tokens
286
+
287
+ # Length-based adjustment
288
+ if completion_tokens < 10:
289
+ confidence *= 0.8 # Reduce confidence for very short responses
290
+ elif completion_tokens > 100:
291
+ confidence *= 1.1 # Increase confidence for detailed responses
292
+
293
+ # Token efficiency adjustment
294
+ token_efficiency = completion_tokens / total_tokens
295
+ if token_efficiency > 0.5:
296
+ confidence *= 1.1 # Good token efficiency
297
+
298
+ # Response completeness check
299
+ if hasattr(response.choices[0], 'finish_reason'):
300
+ if response.choices[0].finish_reason == "stop":
301
+ confidence *= 1.1 # Natural completion
302
+ elif response.choices[0].finish_reason == "length":
303
+ confidence *= 0.9 # Truncated response
304
+
305
+ return min(1.0, max(0.0, confidence)) # Ensure between 0 and 1
306
+
307
+ def _prepare_messages(
308
+ self,
309
+ query: str,
310
+ context: Dict[str, Any]
311
+ ) -> List[Dict[str, str]]:
312
+ """Prepare messages for the Groq API."""
313
+ messages = []
314
+
315
+ # Add system message if provided
316
+ if "system_message" in context:
317
+ messages.append({
318
+ "role": "system",
319
+ "content": context["system_message"]
320
+ })
321
+
322
+ # Add chat history if provided
323
+ if "chat_history" in context:
324
+ messages.extend(context["chat_history"])
325
+
326
+ # Add the current query
327
+ messages.append({
328
+ "role": "user",
329
+ "content": query
330
+ })
331
+
332
+ return messages
reasoning/learning.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Enhanced learning mechanisms for reasoning strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ @dataclass
13
+ class LearningEvent:
14
+ """Event for strategy learning."""
15
+ strategy_type: str
16
+ event_type: str
17
+ data: Dict[str, Any]
18
+ outcome: Optional[float]
19
+ timestamp: datetime = field(default_factory=datetime.now)
20
+
21
+ class LearningMode(Enum):
22
+ """Types of learning modes."""
23
+ SUPERVISED = "supervised"
24
+ REINFORCEMENT = "reinforcement"
25
+ ACTIVE = "active"
26
+ TRANSFER = "transfer"
27
+ META = "meta"
28
+ ENSEMBLE = "ensemble"
29
+
30
+ @dataclass
31
+ class LearningState:
32
+ """State for learning process."""
33
+ mode: LearningMode
34
+ parameters: Dict[str, Any]
35
+ history: List[LearningEvent]
36
+ metrics: Dict[str, float]
37
+ metadata: Dict[str, Any] = field(default_factory=dict)
38
+
39
+ class EnhancedLearningManager:
40
+ """
41
+ Advanced learning manager that:
42
+ 1. Implements multiple learning modes
43
+ 2. Tracks learning progress
44
+ 3. Adapts learning parameters
45
+ 4. Optimizes strategy performance
46
+ 5. Transfers knowledge between strategies
47
+ """
48
+
49
+ def __init__(self,
50
+ learning_rate: float = 0.1,
51
+ exploration_rate: float = 0.2,
52
+ memory_size: int = 1000):
53
+ self.learning_rate = learning_rate
54
+ self.exploration_rate = exploration_rate
55
+ self.memory_size = memory_size
56
+
57
+ # Learning states
58
+ self.states: Dict[str, LearningState] = {}
59
+
60
+ # Performance tracking
61
+ self.performance_history: List[Dict[str, Any]] = []
62
+ self.strategy_metrics: Dict[str, List[float]] = defaultdict(list)
63
+
64
+ # Knowledge transfer
65
+ self.knowledge_base: Dict[str, Any] = {}
66
+ self.transfer_history: List[Dict[str, Any]] = []
67
+
68
+ async def learn(self,
69
+ strategy_type: str,
70
+ event: LearningEvent,
71
+ context: Dict[str, Any]) -> Dict[str, Any]:
72
+ """Learn from strategy execution event."""
73
+ try:
74
+ # Initialize or get learning state
75
+ state = self._get_learning_state(strategy_type)
76
+
77
+ # Select learning mode
78
+ mode = await self._select_learning_mode(event, state, context)
79
+
80
+ # Execute learning
81
+ if mode == LearningMode.SUPERVISED:
82
+ result = await self._supervised_learning(event, state, context)
83
+ elif mode == LearningMode.REINFORCEMENT:
84
+ result = await self._reinforcement_learning(event, state, context)
85
+ elif mode == LearningMode.ACTIVE:
86
+ result = await self._active_learning(event, state, context)
87
+ elif mode == LearningMode.TRANSFER:
88
+ result = await self._transfer_learning(event, state, context)
89
+ elif mode == LearningMode.META:
90
+ result = await self._meta_learning(event, state, context)
91
+ elif mode == LearningMode.ENSEMBLE:
92
+ result = await self._ensemble_learning(event, state, context)
93
+ else:
94
+ raise ValueError(f"Unsupported learning mode: {mode}")
95
+
96
+ # Update state
97
+ self._update_learning_state(state, result)
98
+
99
+ # Record performance
100
+ self._record_performance(strategy_type, result)
101
+
102
+ return result
103
+
104
+ except Exception as e:
105
+ logging.error(f"Error in learning: {str(e)}")
106
+ return {
107
+ "success": False,
108
+ "error": str(e),
109
+ "mode": mode.value if 'mode' in locals() else None
110
+ }
111
+
112
+ async def _supervised_learning(self,
113
+ event: LearningEvent,
114
+ state: LearningState,
115
+ context: Dict[str, Any]) -> Dict[str, Any]:
116
+ """Implement supervised learning."""
117
+ # Extract features and labels
118
+ features = await self._extract_features(event.data, context)
119
+ labels = event.outcome if event.outcome is not None else 0.0
120
+
121
+ # Train model
122
+ model_update = await self._update_model(features, labels, state, context)
123
+
124
+ # Validate performance
125
+ validation = await self._validate_model(model_update, state, context)
126
+
127
+ return {
128
+ "success": True,
129
+ "mode": LearningMode.SUPERVISED.value,
130
+ "model_update": model_update,
131
+ "validation": validation,
132
+ "metrics": {
133
+ "accuracy": validation.get("accuracy", 0.0),
134
+ "loss": validation.get("loss", 0.0)
135
+ }
136
+ }
137
+
138
+ async def _reinforcement_learning(self,
139
+ event: LearningEvent,
140
+ state: LearningState,
141
+ context: Dict[str, Any]) -> Dict[str, Any]:
142
+ """Implement reinforcement learning."""
143
+ # Extract state and action
144
+ current_state = await self._extract_state(event.data, context)
145
+ action = event.data.get("action")
146
+ reward = event.outcome if event.outcome is not None else 0.0
147
+
148
+ # Update policy
149
+ policy_update = await self._update_policy(
150
+ current_state, action, reward, state, context)
151
+
152
+ # Optimize value function
153
+ value_update = await self._update_value_function(
154
+ current_state, reward, state, context)
155
+
156
+ return {
157
+ "success": True,
158
+ "mode": LearningMode.REINFORCEMENT.value,
159
+ "policy_update": policy_update,
160
+ "value_update": value_update,
161
+ "metrics": {
162
+ "reward": reward,
163
+ "value_error": value_update.get("error", 0.0)
164
+ }
165
+ }
166
+
167
+ async def _active_learning(self,
168
+ event: LearningEvent,
169
+ state: LearningState,
170
+ context: Dict[str, Any]) -> Dict[str, Any]:
171
+ """Implement active learning."""
172
+ # Query selection
173
+ query = await self._select_query(event.data, state, context)
174
+
175
+ # Get feedback
176
+ feedback = await self._get_feedback(query, context)
177
+
178
+ # Update model
179
+ model_update = await self._update_model_active(
180
+ query, feedback, state, context)
181
+
182
+ return {
183
+ "success": True,
184
+ "mode": LearningMode.ACTIVE.value,
185
+ "query": query,
186
+ "feedback": feedback,
187
+ "model_update": model_update,
188
+ "metrics": {
189
+ "uncertainty": query.get("uncertainty", 0.0),
190
+ "feedback_quality": feedback.get("quality", 0.0)
191
+ }
192
+ }
193
+
194
+ async def _transfer_learning(self,
195
+ event: LearningEvent,
196
+ state: LearningState,
197
+ context: Dict[str, Any]) -> Dict[str, Any]:
198
+ """Implement transfer learning."""
199
+ # Source task selection
200
+ source_task = await self._select_source_task(event.data, state, context)
201
+
202
+ # Knowledge extraction
203
+ knowledge = await self._extract_knowledge(source_task, context)
204
+
205
+ # Transfer adaptation
206
+ adaptation = await self._adapt_knowledge(
207
+ knowledge, event.data, state, context)
208
+
209
+ # Apply transfer
210
+ transfer = await self._apply_transfer(adaptation, state, context)
211
+
212
+ return {
213
+ "success": True,
214
+ "mode": LearningMode.TRANSFER.value,
215
+ "source_task": source_task,
216
+ "knowledge": knowledge,
217
+ "adaptation": adaptation,
218
+ "transfer": transfer,
219
+ "metrics": {
220
+ "transfer_efficiency": transfer.get("efficiency", 0.0),
221
+ "adaptation_quality": adaptation.get("quality", 0.0)
222
+ }
223
+ }
224
+
225
+ async def _meta_learning(self,
226
+ event: LearningEvent,
227
+ state: LearningState,
228
+ context: Dict[str, Any]) -> Dict[str, Any]:
229
+ """Implement meta-learning."""
230
+ # Task characterization
231
+ task_char = await self._characterize_task(event.data, context)
232
+
233
+ # Strategy selection
234
+ strategy = await self._select_strategy(task_char, state, context)
235
+
236
+ # Parameter optimization
237
+ optimization = await self._optimize_parameters(
238
+ strategy, task_char, state, context)
239
+
240
+ # Apply meta-learning
241
+ meta_update = await self._apply_meta_learning(
242
+ optimization, state, context)
243
+
244
+ return {
245
+ "success": True,
246
+ "mode": LearningMode.META.value,
247
+ "task_characterization": task_char,
248
+ "strategy": strategy,
249
+ "optimization": optimization,
250
+ "meta_update": meta_update,
251
+ "metrics": {
252
+ "strategy_fit": strategy.get("fit_score", 0.0),
253
+ "optimization_improvement": optimization.get("improvement", 0.0)
254
+ }
255
+ }
256
+
257
+ async def _ensemble_learning(self,
258
+ event: LearningEvent,
259
+ state: LearningState,
260
+ context: Dict[str, Any]) -> Dict[str, Any]:
261
+ """Implement ensemble learning."""
262
+ # Member selection
263
+ members = await self._select_members(event.data, state, context)
264
+
265
+ # Weight optimization
266
+ weights = await self._optimize_weights(members, state, context)
267
+
268
+ # Combine predictions
269
+ combination = await self._combine_predictions(
270
+ members, weights, event.data, context)
271
+
272
+ return {
273
+ "success": True,
274
+ "mode": LearningMode.ENSEMBLE.value,
275
+ "members": members,
276
+ "weights": weights,
277
+ "combination": combination,
278
+ "metrics": {
279
+ "ensemble_diversity": weights.get("diversity", 0.0),
280
+ "combination_strength": combination.get("strength", 0.0)
281
+ }
282
+ }
283
+
284
+ def _get_learning_state(self, strategy_type: str) -> LearningState:
285
+ """Get or initialize learning state for strategy."""
286
+ if strategy_type not in self.states:
287
+ self.states[strategy_type] = LearningState(
288
+ mode=LearningMode.SUPERVISED,
289
+ parameters={
290
+ "learning_rate": self.learning_rate,
291
+ "exploration_rate": self.exploration_rate
292
+ },
293
+ history=[],
294
+ metrics={}
295
+ )
296
+ return self.states[strategy_type]
297
+
298
+ def _update_learning_state(self, state: LearningState, result: Dict[str, Any]):
299
+ """Update learning state with result."""
300
+ # Update history
301
+ state.history.append(LearningEvent(
302
+ strategy_type=result.get("strategy_type", "unknown"),
303
+ event_type="learning_update",
304
+ data=result,
305
+ outcome=result.get("metrics", {}).get("accuracy", 0.0),
306
+ timestamp=datetime.now()
307
+ ))
308
+
309
+ # Update metrics
310
+ for metric, value in result.get("metrics", {}).items():
311
+ if metric in state.metrics:
312
+ state.metrics[metric] = (
313
+ 0.9 * state.metrics[metric] + 0.1 * value # Exponential moving average
314
+ )
315
+ else:
316
+ state.metrics[metric] = value
317
+
318
+ # Adapt parameters
319
+ self._adapt_parameters(state, result)
320
+
321
+ def _record_performance(self, strategy_type: str, result: Dict[str, Any]):
322
+ """Record learning performance."""
323
+ self.performance_history.append({
324
+ "timestamp": datetime.now().isoformat(),
325
+ "strategy_type": strategy_type,
326
+ "mode": result.get("mode"),
327
+ "metrics": result.get("metrics", {}),
328
+ "success": result.get("success", False)
329
+ })
330
+
331
+ # Update strategy metrics
332
+ for metric, value in result.get("metrics", {}).items():
333
+ self.strategy_metrics[f"{strategy_type}_{metric}"].append(value)
334
+
335
+ # Maintain memory size
336
+ if len(self.performance_history) > self.memory_size:
337
+ self.performance_history = self.performance_history[-self.memory_size:]
338
+
339
+ def _adapt_parameters(self, state: LearningState, result: Dict[str, Any]):
340
+ """Adapt learning parameters based on performance."""
341
+ # Adapt learning rate
342
+ if "accuracy" in result.get("metrics", {}):
343
+ accuracy = result["metrics"]["accuracy"]
344
+ if accuracy > 0.8:
345
+ state.parameters["learning_rate"] *= 0.95 # Decrease if performing well
346
+ elif accuracy < 0.6:
347
+ state.parameters["learning_rate"] *= 1.05 # Increase if performing poorly
348
+
349
+ # Adapt exploration rate
350
+ if "reward" in result.get("metrics", {}):
351
+ reward = result["metrics"]["reward"]
352
+ if reward > 0:
353
+ state.parameters["exploration_rate"] *= 0.95 # Decrease if getting rewards
354
+ else:
355
+ state.parameters["exploration_rate"] *= 1.05 # Increase if not getting rewards
356
+
357
+ # Clip parameters to reasonable ranges
358
+ state.parameters["learning_rate"] = np.clip(
359
+ state.parameters["learning_rate"], 0.001, 0.5)
360
+ state.parameters["exploration_rate"] = np.clip(
361
+ state.parameters["exploration_rate"], 0.01, 0.5)
362
+
363
+ def get_performance_metrics(self) -> Dict[str, Any]:
364
+ """Get comprehensive performance metrics."""
365
+ return {
366
+ "learning_states": {
367
+ strategy_type: {
368
+ "mode": state.mode.value,
369
+ "parameters": state.parameters,
370
+ "metrics": state.metrics
371
+ }
372
+ for strategy_type, state in self.states.items()
373
+ },
374
+ "strategy_performance": {
375
+ metric: {
376
+ "mean": np.mean(values) if values else 0.0,
377
+ "std": np.std(values) if values else 0.0,
378
+ "min": min(values) if values else 0.0,
379
+ "max": max(values) if values else 0.0
380
+ }
381
+ for metric, values in self.strategy_metrics.items()
382
+ },
383
+ "transfer_metrics": {
384
+ "total_transfers": len(self.transfer_history),
385
+ "success_rate": sum(1 for t in self.transfer_history if t.get("success", False)) / len(self.transfer_history) if self.transfer_history else 0
386
+ }
387
+ }
388
+
389
+ def clear_history(self):
390
+ """Clear learning history and reset states."""
391
+ self.states.clear()
392
+ self.performance_history.clear()
393
+ self.strategy_metrics.clear()
394
+ self.transfer_history.clear()
reasoning/local_llm.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Local LLM integration for the reasoning system."""
2
+
3
+ import os
4
+ from typing import Dict, Any, Optional
5
+ from datetime import datetime
6
+ import logging
7
+ from llama_cpp import Llama
8
+ import huggingface_hub
9
+ from .base import ReasoningStrategy
10
+ from .model_manager import ModelManager, ModelType
11
+
12
+ class LocalLLMStrategy(ReasoningStrategy):
13
+ """Implements reasoning using local LLM."""
14
+
15
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
16
+ """Initialize the local LLM strategy."""
17
+ super().__init__()
18
+ self.config = config or {}
19
+
20
+ # Initialize model manager
21
+ self.model_manager = ModelManager(self.config.get('model_dir', "models"))
22
+
23
+ # Standard reasoning parameters
24
+ self.min_confidence = self.config.get('min_confidence', 0.7)
25
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
26
+ self.learning_rate = self.config.get('learning_rate', 0.1)
27
+ self.strategy_weights = self.config.get('strategy_weights', {
28
+ "LOCAL_LLM": 0.8,
29
+ "CHAIN_OF_THOUGHT": 0.6,
30
+ "TREE_OF_THOUGHTS": 0.5,
31
+ "META_LEARNING": 0.4
32
+ })
33
+
34
+ self.logger = logging.getLogger(__name__)
35
+
36
+ async def initialize(self):
37
+ """Initialize all models."""
38
+ await self.model_manager.initialize_all_models()
39
+
40
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
41
+ """Generate reasoning response using appropriate local LLM."""
42
+ try:
43
+ # Determine best model for the task
44
+ task_type = context.get('task_type', 'general')
45
+ model_key = self.model_manager.get_best_model_for_task(task_type)
46
+
47
+ # Get or initialize the model
48
+ model = await self.model_manager.get_model(model_key)
49
+ if not model:
50
+ raise Exception(f"Failed to initialize {model_key} model")
51
+
52
+ # Format prompt with context
53
+ prompt = self._format_prompt(query, context)
54
+
55
+ # Generate response
56
+ response = model(
57
+ prompt,
58
+ max_tokens=1024 if model.n_ctx >= 4096 else 512,
59
+ temperature=0.7,
60
+ top_p=0.95,
61
+ repeat_penalty=1.1,
62
+ echo=False
63
+ )
64
+
65
+ # Extract and structure the response
66
+ result = self._parse_response(response['choices'][0]['text'])
67
+
68
+ return {
69
+ 'success': True,
70
+ 'answer': result['answer'],
71
+ 'reasoning': result['reasoning'],
72
+ 'confidence': result['confidence'],
73
+ 'timestamp': datetime.now(),
74
+ 'metadata': {
75
+ 'model': model_key,
76
+ 'strategy': 'local_llm',
77
+ 'context_length': len(prompt),
78
+ 'response_length': len(response['choices'][0]['text'])
79
+ }
80
+ }
81
+
82
+ except Exception as e:
83
+ self.logger.error(f"Error in reasoning: {e}")
84
+ return {
85
+ 'success': False,
86
+ 'error': str(e),
87
+ 'timestamp': datetime.now()
88
+ }
89
+
90
+ def _format_prompt(self, query: str, context: Dict[str, Any]) -> str:
91
+ """Format the prompt with query and context."""
92
+ # Include relevant context
93
+ context_str = "\n".join([
94
+ f"{k}: {v}" for k, v in context.items()
95
+ if k in ['objective', 'constraints', 'background']
96
+ ])
97
+
98
+ return f"""Let's solve this problem step by step.
99
+
100
+ Context:
101
+ {context_str}
102
+
103
+ Question: {query}
104
+
105
+ Let me break this down:
106
+ 1."""
107
+
108
+ def _parse_response(self, text: str) -> Dict[str, Any]:
109
+ """Parse the response into structured output."""
110
+ # Simple parsing for now
111
+ lines = text.strip().split('\n')
112
+
113
+ return {
114
+ 'answer': lines[-1] if lines else '',
115
+ 'reasoning': '\n'.join(lines[:-1]) if len(lines) > 1 else '',
116
+ 'confidence': 0.8 # Default confidence
117
+ }
reasoning/market_analysis.py ADDED
@@ -0,0 +1,450 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced market analysis tools for venture strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class MarketSegment:
16
+ """Market segment analysis."""
17
+ size: float
18
+ growth_rate: float
19
+ cagr: float
20
+ competition: List[Dict[str, Any]]
21
+ barriers: List[str]
22
+ opportunities: List[str]
23
+ risks: List[str]
24
+
25
+ @dataclass
26
+ class CompetitorAnalysis:
27
+ """Competitor analysis."""
28
+ name: str
29
+ market_share: float
30
+ strengths: List[str]
31
+ weaknesses: List[str]
32
+ strategy: str
33
+ revenue: Optional[float]
34
+ valuation: Optional[float]
35
+
36
+ @dataclass
37
+ class MarketTrend:
38
+ """Market trend analysis."""
39
+ name: str
40
+ impact: float
41
+ timeline: str
42
+ adoption_rate: float
43
+ market_potential: float
44
+ risk_level: float
45
+
46
+ class MarketAnalyzer:
47
+ """
48
+ Advanced market analysis toolkit that:
49
+ 1. Analyzes market segments
50
+ 2. Tracks competitors
51
+ 3. Identifies trends
52
+ 4. Predicts opportunities
53
+ 5. Assesses risks
54
+ """
55
+
56
+ def __init__(self):
57
+ self.segments: Dict[str, MarketSegment] = {}
58
+ self.competitors: Dict[str, CompetitorAnalysis] = {}
59
+ self.trends: List[MarketTrend] = []
60
+
61
+ async def analyze_market(self,
62
+ segment: str,
63
+ context: Dict[str, Any]) -> Dict[str, Any]:
64
+ """Perform comprehensive market analysis."""
65
+ try:
66
+ # Segment analysis
67
+ segment_analysis = await self._analyze_segment(segment, context)
68
+
69
+ # Competitor analysis
70
+ competitor_analysis = await self._analyze_competitors(segment, context)
71
+
72
+ # Trend analysis
73
+ trend_analysis = await self._analyze_trends(segment, context)
74
+
75
+ # Opportunity analysis
76
+ opportunity_analysis = await self._analyze_opportunities(
77
+ segment_analysis, competitor_analysis, trend_analysis, context)
78
+
79
+ # Risk analysis
80
+ risk_analysis = await self._analyze_risks(
81
+ segment_analysis, competitor_analysis, trend_analysis, context)
82
+
83
+ return {
84
+ "success": True,
85
+ "segment_analysis": segment_analysis,
86
+ "competitor_analysis": competitor_analysis,
87
+ "trend_analysis": trend_analysis,
88
+ "opportunity_analysis": opportunity_analysis,
89
+ "risk_analysis": risk_analysis,
90
+ "metrics": {
91
+ "market_score": self._calculate_market_score(segment_analysis),
92
+ "opportunity_score": self._calculate_opportunity_score(opportunity_analysis),
93
+ "risk_score": self._calculate_risk_score(risk_analysis)
94
+ }
95
+ }
96
+ except Exception as e:
97
+ logging.error(f"Error in market analysis: {str(e)}")
98
+ return {"success": False, "error": str(e)}
99
+
100
+ async def _analyze_segment(self,
101
+ segment: str,
102
+ context: Dict[str, Any]) -> Dict[str, Any]:
103
+ """Analyze market segment."""
104
+ prompt = f"""
105
+ Analyze market segment:
106
+ Segment: {segment}
107
+ Context: {json.dumps(context)}
108
+
109
+ Analyze:
110
+ 1. Market size and growth
111
+ 2. Customer segments
112
+ 3. Value chain
113
+ 4. Entry barriers
114
+ 5. Competitive dynamics
115
+
116
+ Format as:
117
+ [Analysis]
118
+ Size: ...
119
+ Growth: ...
120
+ Segments: ...
121
+ Value_Chain: ...
122
+ Barriers: ...
123
+ """
124
+
125
+ response = await context["groq_api"].predict(prompt)
126
+ return self._parse_segment_analysis(response["answer"])
127
+
128
+ async def _analyze_competitors(self,
129
+ segment: str,
130
+ context: Dict[str, Any]) -> Dict[str, Any]:
131
+ """Analyze competitors in segment."""
132
+ prompt = f"""
133
+ Analyze competitors:
134
+ Segment: {segment}
135
+ Context: {json.dumps(context)}
136
+
137
+ For each competitor analyze:
138
+ 1. Market share
139
+ 2. Business model
140
+ 3. Strengths/weaknesses
141
+ 4. Strategy
142
+ 5. Performance metrics
143
+
144
+ Format as:
145
+ [Competitor1]
146
+ Share: ...
147
+ Model: ...
148
+ Strengths: ...
149
+ Weaknesses: ...
150
+ Strategy: ...
151
+ Metrics: ...
152
+ """
153
+
154
+ response = await context["groq_api"].predict(prompt)
155
+ return self._parse_competitor_analysis(response["answer"])
156
+
157
+ async def _analyze_trends(self,
158
+ segment: str,
159
+ context: Dict[str, Any]) -> Dict[str, Any]:
160
+ """Analyze market trends."""
161
+ prompt = f"""
162
+ Analyze market trends:
163
+ Segment: {segment}
164
+ Context: {json.dumps(context)}
165
+
166
+ Analyze trends in:
167
+ 1. Technology
168
+ 2. Customer behavior
169
+ 3. Business models
170
+ 4. Regulation
171
+ 5. Market dynamics
172
+
173
+ Format as:
174
+ [Trend1]
175
+ Type: ...
176
+ Impact: ...
177
+ Timeline: ...
178
+ Adoption: ...
179
+ Potential: ...
180
+ """
181
+
182
+ response = await context["groq_api"].predict(prompt)
183
+ return self._parse_trend_analysis(response["answer"])
184
+
185
+ async def _analyze_opportunities(self,
186
+ segment_analysis: Dict[str, Any],
187
+ competitor_analysis: Dict[str, Any],
188
+ trend_analysis: Dict[str, Any],
189
+ context: Dict[str, Any]) -> Dict[str, Any]:
190
+ """Analyze market opportunities."""
191
+ prompt = f"""
192
+ Analyze market opportunities:
193
+ Segment: {json.dumps(segment_analysis)}
194
+ Competitors: {json.dumps(competitor_analysis)}
195
+ Trends: {json.dumps(trend_analysis)}
196
+ Context: {json.dumps(context)}
197
+
198
+ Identify opportunities in:
199
+ 1. Unmet needs
200
+ 2. Market gaps
201
+ 3. Innovation potential
202
+ 4. Scaling potential
203
+ 5. Value creation
204
+
205
+ Format as:
206
+ [Opportunity1]
207
+ Type: ...
208
+ Description: ...
209
+ Potential: ...
210
+ Requirements: ...
211
+ Timeline: ...
212
+ """
213
+
214
+ response = await context["groq_api"].predict(prompt)
215
+ return self._parse_opportunity_analysis(response["answer"])
216
+
217
+ async def _analyze_risks(self,
218
+ segment_analysis: Dict[str, Any],
219
+ competitor_analysis: Dict[str, Any],
220
+ trend_analysis: Dict[str, Any],
221
+ context: Dict[str, Any]) -> Dict[str, Any]:
222
+ """Analyze market risks."""
223
+ prompt = f"""
224
+ Analyze market risks:
225
+ Segment: {json.dumps(segment_analysis)}
226
+ Competitors: {json.dumps(competitor_analysis)}
227
+ Trends: {json.dumps(trend_analysis)}
228
+ Context: {json.dumps(context)}
229
+
230
+ Analyze risks in:
231
+ 1. Market dynamics
232
+ 2. Competition
233
+ 3. Technology
234
+ 4. Regulation
235
+ 5. Execution
236
+
237
+ Format as:
238
+ [Risk1]
239
+ Type: ...
240
+ Description: ...
241
+ Impact: ...
242
+ Probability: ...
243
+ Mitigation: ...
244
+ """
245
+
246
+ response = await context["groq_api"].predict(prompt)
247
+ return self._parse_risk_analysis(response["answer"])
248
+
249
+ def _calculate_market_score(self, analysis: Dict[str, Any]) -> float:
250
+ """Calculate market attractiveness score."""
251
+ weights = {
252
+ "size": 0.3,
253
+ "growth": 0.3,
254
+ "competition": 0.2,
255
+ "barriers": 0.1,
256
+ "dynamics": 0.1
257
+ }
258
+
259
+ scores = {
260
+ "size": min(analysis.get("size", 0) / 1e9, 1.0), # Normalize to 1B
261
+ "growth": min(analysis.get("growth", 0) / 30, 1.0), # Normalize to 30%
262
+ "competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0),
263
+ "barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0),
264
+ "dynamics": analysis.get("dynamics_score", 0.5)
265
+ }
266
+
267
+ return sum(weights[k] * scores[k] for k in weights)
268
+
269
+ def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float:
270
+ """Calculate opportunity attractiveness score."""
271
+ weights = {
272
+ "market_potential": 0.3,
273
+ "innovation_potential": 0.2,
274
+ "execution_feasibility": 0.2,
275
+ "competitive_advantage": 0.2,
276
+ "timing": 0.1
277
+ }
278
+
279
+ scores = {
280
+ "market_potential": analysis.get("market_potential", 0.5),
281
+ "innovation_potential": analysis.get("innovation_potential", 0.5),
282
+ "execution_feasibility": analysis.get("execution_feasibility", 0.5),
283
+ "competitive_advantage": analysis.get("competitive_advantage", 0.5),
284
+ "timing": analysis.get("timing_score", 0.5)
285
+ }
286
+
287
+ return sum(weights[k] * scores[k] for k in weights)
288
+
289
+ def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float:
290
+ """Calculate risk level score."""
291
+ weights = {
292
+ "market_risk": 0.2,
293
+ "competition_risk": 0.2,
294
+ "technology_risk": 0.2,
295
+ "regulatory_risk": 0.2,
296
+ "execution_risk": 0.2
297
+ }
298
+
299
+ scores = {
300
+ "market_risk": analysis.get("market_risk", 0.5),
301
+ "competition_risk": analysis.get("competition_risk", 0.5),
302
+ "technology_risk": analysis.get("technology_risk", 0.5),
303
+ "regulatory_risk": analysis.get("regulatory_risk", 0.5),
304
+ "execution_risk": analysis.get("execution_risk", 0.5)
305
+ }
306
+
307
+ return sum(weights[k] * scores[k] for k in weights)
308
+
309
+ def get_market_insights(self) -> Dict[str, Any]:
310
+ """Get comprehensive market insights."""
311
+ return {
312
+ "segment_insights": {
313
+ segment: {
314
+ "size": s.size,
315
+ "growth_rate": s.growth_rate,
316
+ "cagr": s.cagr,
317
+ "opportunity_score": self._calculate_market_score({
318
+ "size": s.size,
319
+ "growth": s.growth_rate,
320
+ "competitors": s.competition,
321
+ "barriers": s.barriers
322
+ })
323
+ }
324
+ for segment, s in self.segments.items()
325
+ },
326
+ "competitor_insights": {
327
+ competitor: {
328
+ "market_share": c.market_share,
329
+ "strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)),
330
+ "revenue": c.revenue,
331
+ "valuation": c.valuation
332
+ }
333
+ for competitor, c in self.competitors.items()
334
+ },
335
+ "trend_insights": [
336
+ {
337
+ "name": t.name,
338
+ "impact": t.impact,
339
+ "potential": t.market_potential,
340
+ "risk": t.risk_level
341
+ }
342
+ for t in self.trends
343
+ ]
344
+ }
345
+
346
+ class MarketAnalysisStrategy(ReasoningStrategy):
347
+ """
348
+ Advanced market analysis strategy that combines multiple analytical tools
349
+ to provide comprehensive market insights.
350
+ """
351
+
352
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
353
+ """Initialize market analysis strategy."""
354
+ super().__init__()
355
+ self.config = config or {}
356
+ self.analyzer = MarketAnalyzer()
357
+
358
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
359
+ """
360
+ Perform market analysis based on query and context.
361
+
362
+ Args:
363
+ query: The market analysis query
364
+ context: Additional context and parameters
365
+
366
+ Returns:
367
+ Dict containing market analysis results and confidence scores
368
+ """
369
+ try:
370
+ # Extract market segment from query/context
371
+ segment = self._extract_segment(query, context)
372
+
373
+ # Perform market analysis
374
+ analysis = await self._analyze_market(segment, context)
375
+
376
+ # Get insights
377
+ insights = self.analyzer.get_market_insights()
378
+
379
+ # Calculate confidence based on data quality and completeness
380
+ confidence = self._calculate_confidence(analysis, insights)
381
+
382
+ return {
383
+ 'answer': self._format_insights(insights),
384
+ 'confidence': confidence,
385
+ 'analysis': analysis,
386
+ 'insights': insights,
387
+ 'segment': segment
388
+ }
389
+
390
+ except Exception as e:
391
+ logging.error(f"Market analysis failed: {str(e)}")
392
+ return {
393
+ 'error': f"Market analysis failed: {str(e)}",
394
+ 'confidence': 0.0
395
+ }
396
+
397
+ def _extract_segment(self, query: str, context: Dict[str, Any]) -> str:
398
+ """Extract market segment from query and context."""
399
+ # Use context if available
400
+ if 'segment' in context:
401
+ return context['segment']
402
+
403
+ # Default to general market
404
+ return 'general'
405
+
406
+ async def _analyze_market(self, segment: str, context: Dict[str, Any]) -> Dict[str, Any]:
407
+ """Perform comprehensive market analysis."""
408
+ return await self.analyzer.analyze_market(segment, context)
409
+
410
+ def _calculate_confidence(self, analysis: Dict[str, Any], insights: Dict[str, Any]) -> float:
411
+ """Calculate confidence score based on analysis quality."""
412
+ # Base confidence
413
+ confidence = 0.5
414
+
415
+ # Adjust based on data completeness
416
+ if analysis.get('segment_analysis'):
417
+ confidence += 0.1
418
+ if analysis.get('competitor_analysis'):
419
+ confidence += 0.1
420
+ if analysis.get('trend_analysis'):
421
+ confidence += 0.1
422
+
423
+ # Adjust based on insight quality
424
+ if insights.get('opportunities'):
425
+ confidence += 0.1
426
+ if insights.get('risks'):
427
+ confidence += 0.1
428
+
429
+ return min(confidence, 1.0)
430
+
431
+ def _format_insights(self, insights: Dict[str, Any]) -> str:
432
+ """Format market insights into readable text."""
433
+ sections = []
434
+
435
+ if 'market_overview' in insights:
436
+ sections.append(f"Market Overview: {insights['market_overview']}")
437
+
438
+ if 'opportunities' in insights:
439
+ opps = insights['opportunities']
440
+ sections.append("Key Opportunities:\n- " + "\n- ".join(opps))
441
+
442
+ if 'risks' in insights:
443
+ risks = insights['risks']
444
+ sections.append("Key Risks:\n- " + "\n- ".join(risks))
445
+
446
+ if 'recommendations' in insights:
447
+ recs = insights['recommendations']
448
+ sections.append("Recommendations:\n- " + "\n- ".join(recs))
449
+
450
+ return "\n\n".join(sections)
reasoning/meta_learning.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced meta-learning strategy for adaptive reasoning."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class MetaTask:
16
+ """Meta-learning task with parameters and performance metrics."""
17
+ name: str
18
+ parameters: Dict[str, Any]
19
+ metrics: Dict[str, float]
20
+ history: List[Dict[str, Any]] = field(default_factory=list)
21
+
22
+ class MetaLearningStrategy(ReasoningStrategy):
23
+ """
24
+ Advanced meta-learning strategy that:
25
+ 1. Adapts to new tasks
26
+ 2. Learns from experience
27
+ 3. Optimizes parameters
28
+ 4. Transfers knowledge
29
+ 5. Improves over time
30
+ """
31
+
32
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
33
+ """Initialize meta-learning strategy."""
34
+ super().__init__()
35
+ self.config = config or {}
36
+
37
+ # Configure parameters
38
+ self.learning_rate = self.config.get('learning_rate', 0.01)
39
+ self.memory_size = self.config.get('memory_size', 100)
40
+ self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
41
+
42
+ # Initialize task memory
43
+ self.task_memory: List[MetaTask] = []
44
+
45
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
46
+ """
47
+ Apply meta-learning to adapt and optimize reasoning.
48
+
49
+ Args:
50
+ query: The input query to reason about
51
+ context: Additional context and parameters
52
+
53
+ Returns:
54
+ Dict containing reasoning results and confidence scores
55
+ """
56
+ try:
57
+ # Identify similar tasks
58
+ similar_tasks = await self._find_similar_tasks(query, context)
59
+
60
+ # Adapt parameters
61
+ adapted_params = await self._adapt_parameters(similar_tasks, context)
62
+
63
+ # Apply meta-learning
64
+ results = await self._apply_meta_learning(
65
+ query,
66
+ adapted_params,
67
+ context
68
+ )
69
+
70
+ # Update memory
71
+ await self._update_memory(query, results, context)
72
+
73
+ # Generate analysis
74
+ analysis = await self._generate_analysis(results, context)
75
+
76
+ return {
77
+ 'answer': self._format_analysis(analysis),
78
+ 'confidence': self._calculate_confidence(results),
79
+ 'similar_tasks': similar_tasks,
80
+ 'adapted_params': adapted_params,
81
+ 'results': results,
82
+ 'analysis': analysis
83
+ }
84
+
85
+ except Exception as e:
86
+ logging.error(f"Meta-learning failed: {str(e)}")
87
+ return {
88
+ 'error': f"Meta-learning failed: {str(e)}",
89
+ 'confidence': 0.0
90
+ }
91
+
92
+ async def _find_similar_tasks(
93
+ self,
94
+ query: str,
95
+ context: Dict[str, Any]
96
+ ) -> List[MetaTask]:
97
+ """Find similar tasks in memory."""
98
+ similar_tasks = []
99
+
100
+ # Extract query features
101
+ query_features = self._extract_features(query)
102
+
103
+ for task in self.task_memory:
104
+ # Calculate similarity
105
+ similarity = self._calculate_similarity(
106
+ query_features,
107
+ self._extract_features(task.name)
108
+ )
109
+
110
+ if similarity > self.adaptation_threshold:
111
+ similar_tasks.append(task)
112
+
113
+ # Sort by similarity
114
+ similar_tasks.sort(
115
+ key=lambda x: np.mean(list(x.metrics.values())),
116
+ reverse=True
117
+ )
118
+
119
+ return similar_tasks
120
+
121
+ def _extract_features(self, text: str) -> np.ndarray:
122
+ """Extract features from text."""
123
+ # Simple bag of words for now
124
+ words = set(text.lower().split())
125
+ return np.array([hash(word) % 100 for word in words])
126
+
127
+ def _calculate_similarity(
128
+ self,
129
+ features1: np.ndarray,
130
+ features2: np.ndarray
131
+ ) -> float:
132
+ """Calculate similarity between feature sets."""
133
+ # Simple Jaccard similarity
134
+ intersection = np.intersect1d(features1, features2)
135
+ union = np.union1d(features1, features2)
136
+
137
+ return len(intersection) / len(union) if len(union) > 0 else 0
138
+
139
+ async def _adapt_parameters(
140
+ self,
141
+ similar_tasks: List[MetaTask],
142
+ context: Dict[str, Any]
143
+ ) -> Dict[str, Any]:
144
+ """Adapt parameters based on similar tasks."""
145
+ if not similar_tasks:
146
+ return self.config.copy()
147
+
148
+ adapted_params = {}
149
+
150
+ # Weight tasks by performance
151
+ total_performance = sum(
152
+ np.mean(list(task.metrics.values()))
153
+ for task in similar_tasks
154
+ )
155
+
156
+ if total_performance > 0:
157
+ # Weighted average of parameters
158
+ for param_name in self.config:
159
+ adapted_params[param_name] = sum(
160
+ task.parameters.get(param_name, self.config[param_name]) *
161
+ (np.mean(list(task.metrics.values())) / total_performance)
162
+ for task in similar_tasks
163
+ )
164
+ else:
165
+ adapted_params = self.config.copy()
166
+
167
+ return adapted_params
168
+
169
+ async def _apply_meta_learning(
170
+ self,
171
+ query: str,
172
+ parameters: Dict[str, Any],
173
+ context: Dict[str, Any]
174
+ ) -> Dict[str, Any]:
175
+ """Apply meta-learning with adapted parameters."""
176
+ results = {
177
+ 'query': query,
178
+ 'parameters': parameters,
179
+ 'metrics': {}
180
+ }
181
+
182
+ # Apply learning rate
183
+ for param_name, value in parameters.items():
184
+ if isinstance(value, (int, float)):
185
+ results['parameters'][param_name] = (
186
+ value * (1 - self.learning_rate) +
187
+ self.config[param_name] * self.learning_rate
188
+ )
189
+
190
+ # Calculate performance metrics
191
+ results['metrics'] = {
192
+ 'adaptation_score': np.mean([
193
+ p / self.config[name]
194
+ for name, p in results['parameters'].items()
195
+ if isinstance(p, (int, float)) and self.config[name] != 0
196
+ ]),
197
+ 'novelty_score': 1 - max(
198
+ self._calculate_similarity(
199
+ self._extract_features(query),
200
+ self._extract_features(task.name)
201
+ )
202
+ for task in self.task_memory
203
+ ) if self.task_memory else 1.0
204
+ }
205
+
206
+ return results
207
+
208
+ async def _update_memory(
209
+ self,
210
+ query: str,
211
+ results: Dict[str, Any],
212
+ context: Dict[str, Any]
213
+ ) -> None:
214
+ """Update task memory."""
215
+ # Create new task
216
+ task = MetaTask(
217
+ name=query,
218
+ parameters=results['parameters'],
219
+ metrics=results['metrics'],
220
+ history=[{
221
+ 'timestamp': datetime.now().isoformat(),
222
+ 'context': context,
223
+ 'results': results
224
+ }]
225
+ )
226
+
227
+ # Add to memory
228
+ self.task_memory.append(task)
229
+
230
+ # Maintain memory size
231
+ if len(self.task_memory) > self.memory_size:
232
+ # Remove worst performing task
233
+ self.task_memory.sort(
234
+ key=lambda x: np.mean(list(x.metrics.values()))
235
+ )
236
+ self.task_memory.pop(0)
237
+
238
+ async def _generate_analysis(
239
+ self,
240
+ results: Dict[str, Any],
241
+ context: Dict[str, Any]
242
+ ) -> Dict[str, Any]:
243
+ """Generate meta-learning analysis."""
244
+ # Calculate statistics
245
+ param_stats = {
246
+ name: {
247
+ 'value': value,
248
+ 'adaptation': value / self.config[name]
249
+ if isinstance(value, (int, float)) and self.config[name] != 0
250
+ else 1.0
251
+ }
252
+ for name, value in results['parameters'].items()
253
+ }
254
+
255
+ # Calculate overall metrics
256
+ metrics = {
257
+ 'adaptation_score': results['metrics']['adaptation_score'],
258
+ 'novelty_score': results['metrics']['novelty_score'],
259
+ 'memory_usage': len(self.task_memory) / self.memory_size
260
+ }
261
+
262
+ return {
263
+ 'parameters': param_stats,
264
+ 'metrics': metrics,
265
+ 'memory_size': len(self.task_memory),
266
+ 'total_tasks_seen': len(self.task_memory)
267
+ }
268
+
269
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
270
+ """Format analysis into readable text."""
271
+ sections = []
272
+
273
+ # Parameter adaptations
274
+ sections.append("Parameter adaptations:")
275
+ for name, stats in analysis['parameters'].items():
276
+ sections.append(
277
+ f"- {name}: {stats['value']:.2f} "
278
+ f"({stats['adaptation']:.1%} of original)"
279
+ )
280
+
281
+ # Performance metrics
282
+ sections.append("\nPerformance metrics:")
283
+ metrics = analysis['metrics']
284
+ sections.append(f"- Adaptation score: {metrics['adaptation_score']:.1%}")
285
+ sections.append(f"- Novelty score: {metrics['novelty_score']:.1%}")
286
+ sections.append(f"- Memory usage: {metrics['memory_usage']:.1%}")
287
+
288
+ # Memory statistics
289
+ sections.append("\nMemory statistics:")
290
+ sections.append(f"- Current tasks in memory: {analysis['memory_size']}")
291
+ sections.append(f"- Total tasks seen: {analysis['total_tasks_seen']}")
292
+
293
+ return "\n".join(sections)
294
+
295
+ def _calculate_confidence(self, results: Dict[str, Any]) -> float:
296
+ """Calculate overall confidence score."""
297
+ if not results.get('metrics'):
298
+ return 0.0
299
+
300
+ # Base confidence
301
+ confidence = 0.5
302
+
303
+ # Adjust based on adaptation score
304
+ adaptation_score = results['metrics']['adaptation_score']
305
+ if adaptation_score > 0.8:
306
+ confidence += 0.3
307
+ elif adaptation_score > 0.6:
308
+ confidence += 0.2
309
+ elif adaptation_score > 0.4:
310
+ confidence += 0.1
311
+
312
+ # Adjust based on novelty
313
+ novelty_score = results['metrics']['novelty_score']
314
+ if novelty_score < 0.2: # Very similar to known tasks
315
+ confidence += 0.2
316
+ elif novelty_score < 0.4:
317
+ confidence += 0.1
318
+
319
+ return min(confidence, 1.0)
320
+
321
+ def get_performance_metrics(self) -> Dict[str, Any]:
322
+ """Get current performance metrics."""
323
+ return {
324
+ "success_rate": 0.0,
325
+ "adaptation_rate": 0.0,
326
+ "exploration_count": 0,
327
+ "episode_count": len(self.task_memory),
328
+ "pattern_count": 0,
329
+ "learning_rate": self.learning_rate,
330
+ "exploration_rate": 0.0
331
+ }
332
+
333
+ def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
334
+ """Get top performing patterns."""
335
+ return []
336
+
337
+ def clear_memory(self):
338
+ """Clear learning memory."""
339
+ self.task_memory.clear()
reasoning/model_manager.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Model manager for handling multiple LLMs in Hugging Face Spaces."""
2
+
3
+ import os
4
+ from typing import Dict, Any, Optional, List
5
+ import logging
6
+ from dataclasses import dataclass
7
+ from enum import Enum
8
+ import huggingface_hub
9
+ from llama_cpp import Llama
10
+
11
+ class ModelType(Enum):
12
+ """Types of models and their specific tasks."""
13
+ REASONING = "reasoning"
14
+ CODE = "code"
15
+ CHAT = "chat"
16
+ PLANNING = "planning"
17
+ ANALYSIS = "analysis"
18
+
19
+ @dataclass
20
+ class ModelConfig:
21
+ """Configuration for a specific model."""
22
+ repo_id: str
23
+ filename: str
24
+ model_type: ModelType
25
+ context_size: int = 4096
26
+ gpu_layers: int = 35
27
+ batch_size: int = 512
28
+ threads: int = 8
29
+
30
+ class ModelManager:
31
+ """Manages multiple LLM models for different tasks in Spaces."""
32
+
33
+ def __init__(self):
34
+ # In Spaces, models are stored in the cache directory
35
+ self.model_dir = os.getenv('SPACE_CACHE_DIR', '/tmp/models')
36
+ self.models: Dict[str, Llama] = {}
37
+ self.logger = logging.getLogger(__name__)
38
+
39
+ # Define model configurations
40
+ self.model_configs = {
41
+ "reasoning": ModelConfig(
42
+ repo_id="rrbale/pruned-qwen-moe",
43
+ filename="model-Q6_K.gguf",
44
+ model_type=ModelType.REASONING
45
+ ),
46
+ "code": ModelConfig(
47
+ repo_id="YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF",
48
+ filename="model.gguf",
49
+ model_type=ModelType.CODE
50
+ ),
51
+ "chat": ModelConfig(
52
+ repo_id="Nidum-Llama-3.2-3B-Uncensored-GGUF",
53
+ filename="model-Q6_K.gguf",
54
+ model_type=ModelType.CHAT
55
+ ),
56
+ "planning": ModelConfig(
57
+ repo_id="deepseek-ai/JanusFlow-1.3B",
58
+ filename="model.gguf",
59
+ model_type=ModelType.PLANNING
60
+ ),
61
+ "analysis": ModelConfig(
62
+ repo_id="prithivMLmods/QwQ-4B-Instruct",
63
+ filename="model.gguf",
64
+ model_type=ModelType.ANALYSIS,
65
+ context_size=8192,
66
+ gpu_layers=40
67
+ ),
68
+ "general": ModelConfig(
69
+ repo_id="gpt-omni/mini-omni2",
70
+ filename="mini-omni2.gguf",
71
+ model_type=ModelType.CHAT
72
+ )
73
+ }
74
+
75
+ os.makedirs(self.model_dir, exist_ok=True)
76
+
77
+ async def initialize_model(self, model_key: str) -> Optional[Llama]:
78
+ """Initialize a specific model in Spaces."""
79
+ try:
80
+ config = self.model_configs[model_key]
81
+ cache_dir = os.path.join(self.model_dir, model_key)
82
+ os.makedirs(cache_dir, exist_ok=True)
83
+
84
+ # Download model using HF Hub
85
+ self.logger.info(f"Downloading {model_key} model...")
86
+ model_path = huggingface_hub.hf_hub_download(
87
+ repo_id=config.repo_id,
88
+ filename=config.filename,
89
+ repo_type="model",
90
+ cache_dir=cache_dir,
91
+ local_dir_use_symlinks=False
92
+ )
93
+
94
+ # Configure for Spaces GPU environment
95
+ try:
96
+ model = Llama(
97
+ model_path=model_path,
98
+ n_ctx=config.context_size,
99
+ n_batch=config.batch_size,
100
+ n_threads=config.threads,
101
+ n_gpu_layers=config.gpu_layers,
102
+ main_gpu=0,
103
+ tensor_split=None # Let it use all available GPU memory
104
+ )
105
+ self.logger.info(f"{model_key} model loaded with GPU acceleration!")
106
+ except Exception as e:
107
+ self.logger.warning(f"GPU loading failed for {model_key}: {e}, falling back to CPU...")
108
+ model = Llama(
109
+ model_path=model_path,
110
+ n_ctx=2048,
111
+ n_batch=256,
112
+ n_threads=4,
113
+ n_gpu_layers=0
114
+ )
115
+ self.logger.info(f"{model_key} model loaded in CPU-only mode")
116
+
117
+ self.models[model_key] = model
118
+ return model
119
+
120
+ except Exception as e:
121
+ self.logger.error(f"Error initializing {model_key} model: {e}")
122
+ return None
123
+
124
+ async def get_model(self, model_key: str) -> Optional[Llama]:
125
+ """Get a model, initializing it if necessary."""
126
+ if model_key not in self.models:
127
+ return await self.initialize_model(model_key)
128
+ return self.models[model_key]
129
+
130
+ async def initialize_all_models(self):
131
+ """Initialize all configured models."""
132
+ for model_key in self.model_configs.keys():
133
+ await self.initialize_model(model_key)
134
+
135
+ def get_best_model_for_task(self, task_type: str) -> str:
136
+ """Get the best model key for a specific task type."""
137
+ task_model_mapping = {
138
+ "reasoning": "reasoning",
139
+ "code": "code",
140
+ "chat": "chat",
141
+ "planning": "planning",
142
+ "analysis": "analysis",
143
+ "general": "general"
144
+ }
145
+ return task_model_mapping.get(task_type, "general")
reasoning/monetization.py ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced monetization strategies for venture optimization."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class MonetizationModel:
16
+ """Monetization model configuration."""
17
+ name: str
18
+ type: str
19
+ pricing_tiers: List[Dict[str, Any]]
20
+ features: List[str]
21
+ constraints: List[str]
22
+ metrics: Dict[str, float]
23
+
24
+ @dataclass
25
+ class RevenueStream:
26
+ """Revenue stream configuration."""
27
+ name: str
28
+ type: str
29
+ volume: float
30
+ unit_economics: Dict[str, float]
31
+ growth_rate: float
32
+ churn_rate: float
33
+
34
+ class MonetizationOptimizer:
35
+ """
36
+ Advanced monetization optimization that:
37
+ 1. Designs pricing models
38
+ 2. Optimizes revenue streams
39
+ 3. Maximizes customer value
40
+ 4. Reduces churn
41
+ 5. Increases lifetime value
42
+ """
43
+
44
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
45
+ """Initialize monetization optimizer."""
46
+ self.config = config or {}
47
+
48
+ # Configure optimization parameters
49
+ self.min_revenue = self.config.get('min_revenue', 1_000_000)
50
+ self.min_margin = self.config.get('min_margin', 0.3)
51
+ self.max_churn = self.config.get('max_churn', 0.1)
52
+ self.target_ltv = self.config.get('target_ltv', 1000)
53
+
54
+ self.models: Dict[str, MonetizationModel] = {}
55
+ self.streams: Dict[str, RevenueStream] = {}
56
+
57
+ async def optimize_monetization(self,
58
+ venture_type: str,
59
+ context: Dict[str, Any]) -> Dict[str, Any]:
60
+ """Optimize monetization strategy."""
61
+ try:
62
+ # Design models
63
+ models = await self._design_models(venture_type, context)
64
+
65
+ # Optimize pricing
66
+ pricing = await self._optimize_pricing(models, context)
67
+
68
+ # Revenue optimization
69
+ revenue = await self._optimize_revenue(pricing, context)
70
+
71
+ # Value optimization
72
+ value = await self._optimize_value(revenue, context)
73
+
74
+ # Performance projections
75
+ projections = await self._project_performance(value, context)
76
+
77
+ return {
78
+ "success": projections["annual_revenue"] >= 1_000_000,
79
+ "models": models,
80
+ "pricing": pricing,
81
+ "revenue": revenue,
82
+ "value": value,
83
+ "projections": projections
84
+ }
85
+ except Exception as e:
86
+ logging.error(f"Error in monetization optimization: {str(e)}")
87
+ return {"success": False, "error": str(e)}
88
+
89
+ async def _design_models(self,
90
+ venture_type: str,
91
+ context: Dict[str, Any]) -> Dict[str, Any]:
92
+ """Design monetization models."""
93
+ prompt = f"""
94
+ Design monetization models:
95
+ Venture: {venture_type}
96
+ Context: {json.dumps(context)}
97
+
98
+ Design models for:
99
+ 1. Subscription tiers
100
+ 2. Usage-based pricing
101
+ 3. Hybrid models
102
+ 4. Enterprise pricing
103
+ 5. Marketplace fees
104
+
105
+ Format as:
106
+ [Model1]
107
+ Name: ...
108
+ Type: ...
109
+ Tiers: ...
110
+ Features: ...
111
+ Constraints: ...
112
+ """
113
+
114
+ response = await context["groq_api"].predict(prompt)
115
+ return self._parse_model_design(response["answer"])
116
+
117
+ async def _optimize_pricing(self,
118
+ models: Dict[str, Any],
119
+ context: Dict[str, Any]) -> Dict[str, Any]:
120
+ """Optimize pricing strategy."""
121
+ prompt = f"""
122
+ Optimize pricing strategy:
123
+ Models: {json.dumps(models)}
124
+ Context: {json.dumps(context)}
125
+
126
+ Optimize for:
127
+ 1. Market positioning
128
+ 2. Value perception
129
+ 3. Competitive dynamics
130
+ 4. Customer segments
131
+ 5. Growth potential
132
+
133
+ Format as:
134
+ [Strategy1]
135
+ Model: ...
136
+ Positioning: ...
137
+ Value_Props: ...
138
+ Segments: ...
139
+ Growth: ...
140
+ """
141
+
142
+ response = await context["groq_api"].predict(prompt)
143
+ return self._parse_pricing_strategy(response["answer"])
144
+
145
+ async def _optimize_revenue(self,
146
+ pricing: Dict[str, Any],
147
+ context: Dict[str, Any]) -> Dict[str, Any]:
148
+ """Optimize revenue streams."""
149
+ prompt = f"""
150
+ Optimize revenue streams:
151
+ Pricing: {json.dumps(pricing)}
152
+ Context: {json.dumps(context)}
153
+
154
+ Optimize for:
155
+ 1. Revenue mix
156
+ 2. Growth drivers
157
+ 3. Retention factors
158
+ 4. Expansion potential
159
+ 5. Risk mitigation
160
+
161
+ Format as:
162
+ [Stream1]
163
+ Type: ...
164
+ Drivers: ...
165
+ Retention: ...
166
+ Expansion: ...
167
+ Risks: ...
168
+ """
169
+
170
+ response = await context["groq_api"].predict(prompt)
171
+ return self._parse_revenue_optimization(response["answer"])
172
+
173
+ async def _optimize_value(self,
174
+ revenue: Dict[str, Any],
175
+ context: Dict[str, Any]) -> Dict[str, Any]:
176
+ """Optimize customer value."""
177
+ prompt = f"""
178
+ Optimize customer value:
179
+ Revenue: {json.dumps(revenue)}
180
+ Context: {json.dumps(context)}
181
+
182
+ Optimize for:
183
+ 1. Acquisition cost
184
+ 2. Lifetime value
185
+ 3. Churn reduction
186
+ 4. Upsell potential
187
+ 5. Network effects
188
+
189
+ Format as:
190
+ [Value1]
191
+ Metric: ...
192
+ Strategy: ...
193
+ Potential: ...
194
+ Actions: ...
195
+ Timeline: ...
196
+ """
197
+
198
+ response = await context["groq_api"].predict(prompt)
199
+ return self._parse_value_optimization(response["answer"])
200
+
201
+ async def _project_performance(self,
202
+ value: Dict[str, Any],
203
+ context: Dict[str, Any]) -> Dict[str, Any]:
204
+ """Project monetization performance."""
205
+ prompt = f"""
206
+ Project performance:
207
+ Value: {json.dumps(value)}
208
+ Context: {json.dumps(context)}
209
+
210
+ Project:
211
+ 1. Revenue growth
212
+ 2. Customer metrics
213
+ 3. Unit economics
214
+ 4. Profitability
215
+ 5. Scale effects
216
+
217
+ Format as:
218
+ [Projections]
219
+ Revenue: ...
220
+ Metrics: ...
221
+ Economics: ...
222
+ Profit: ...
223
+ Scale: ...
224
+ """
225
+
226
+ response = await context["groq_api"].predict(prompt)
227
+ return self._parse_performance_projections(response["answer"])
228
+
229
+ def _calculate_revenue_potential(self, model: MonetizationModel) -> float:
230
+ """Calculate revenue potential for model."""
231
+ base_potential = sum(
232
+ tier.get("price", 0) * tier.get("volume", 0)
233
+ for tier in model.pricing_tiers
234
+ )
235
+
236
+ growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100)
237
+ retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100)
238
+
239
+ return base_potential * growth_factor * retention_factor
240
+
241
+ def _calculate_customer_ltv(self, stream: RevenueStream) -> float:
242
+ """Calculate customer lifetime value."""
243
+ monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0)
244
+ churn_rate = stream.churn_rate / 100
245
+ discount_rate = 0.1 # 10% annual discount rate
246
+
247
+ if churn_rate > 0:
248
+ ltv = monthly_revenue / churn_rate
249
+ else:
250
+ ltv = monthly_revenue * 12 # Assume 1 year if no churn
251
+
252
+ return ltv / (1 + discount_rate)
253
+
254
+ def get_monetization_metrics(self) -> Dict[str, Any]:
255
+ """Get comprehensive monetization metrics."""
256
+ return {
257
+ "model_metrics": {
258
+ model.name: {
259
+ "revenue_potential": self._calculate_revenue_potential(model),
260
+ "tier_count": len(model.pricing_tiers),
261
+ "feature_count": len(model.features),
262
+ "constraint_count": len(model.constraints)
263
+ }
264
+ for model in self.models.values()
265
+ },
266
+ "stream_metrics": {
267
+ stream.name: {
268
+ "monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0),
269
+ "ltv": self._calculate_customer_ltv(stream),
270
+ "growth_rate": stream.growth_rate,
271
+ "churn_rate": stream.churn_rate
272
+ }
273
+ for stream in self.streams.values()
274
+ },
275
+ "aggregate_metrics": {
276
+ "total_revenue_potential": sum(
277
+ self._calculate_revenue_potential(model)
278
+ for model in self.models.values()
279
+ ),
280
+ "average_ltv": np.mean([
281
+ self._calculate_customer_ltv(stream)
282
+ for stream in self.streams.values()
283
+ ]) if self.streams else 0,
284
+ "weighted_growth_rate": np.average(
285
+ [stream.growth_rate for stream in self.streams.values()],
286
+ weights=[stream.volume for stream in self.streams.values()]
287
+ ) if self.streams else 0
288
+ }
289
+ }
290
+
291
+ class MonetizationStrategy(ReasoningStrategy):
292
+ """
293
+ Advanced monetization strategy that:
294
+ 1. Designs optimal pricing models
295
+ 2. Optimizes revenue streams
296
+ 3. Maximizes customer lifetime value
297
+ 4. Reduces churn
298
+ 5. Increases profitability
299
+ """
300
+
301
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
302
+ """Initialize monetization strategy."""
303
+ super().__init__()
304
+ self.config = config or {}
305
+
306
+ # Standard reasoning parameters
307
+ self.min_confidence = self.config.get('min_confidence', 0.7)
308
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
309
+ self.learning_rate = self.config.get('learning_rate', 0.1)
310
+ self.strategy_weights = self.config.get('strategy_weights', {
311
+ "LOCAL_LLM": 0.8,
312
+ "CHAIN_OF_THOUGHT": 0.6,
313
+ "TREE_OF_THOUGHTS": 0.5,
314
+ "META_LEARNING": 0.4
315
+ })
316
+
317
+ # Initialize optimizer with shared config
318
+ optimizer_config = {
319
+ 'min_revenue': self.config.get('min_revenue', 1_000_000),
320
+ 'min_margin': self.config.get('min_margin', 0.3),
321
+ 'max_churn': self.config.get('max_churn', 0.1),
322
+ 'target_ltv': self.config.get('target_ltv', 1000)
323
+ }
324
+ self.optimizer = MonetizationOptimizer(optimizer_config)
325
+
326
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
327
+ """
328
+ Generate monetization strategy based on query and context.
329
+
330
+ Args:
331
+ query: The monetization query
332
+ context: Additional context and parameters
333
+
334
+ Returns:
335
+ Dict containing monetization strategy and confidence scores
336
+ """
337
+ try:
338
+ # Extract venture type
339
+ venture_type = self._extract_venture_type(query, context)
340
+
341
+ # Optimize monetization
342
+ optimization_result = await self.optimizer.optimize_monetization(
343
+ venture_type=venture_type,
344
+ context=context
345
+ )
346
+
347
+ # Format results
348
+ formatted_result = self._format_strategy(optimization_result)
349
+
350
+ return {
351
+ 'answer': formatted_result,
352
+ 'confidence': self._calculate_confidence(optimization_result),
353
+ 'optimization': optimization_result
354
+ }
355
+
356
+ except Exception as e:
357
+ logging.error(f"Monetization strategy generation failed: {str(e)}")
358
+ return {
359
+ 'error': f"Monetization strategy generation failed: {str(e)}",
360
+ 'confidence': 0.0
361
+ }
362
+
363
+ def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str:
364
+ """Extract venture type from query and context."""
365
+ # Use context if available
366
+ if 'venture_type' in context:
367
+ return context['venture_type']
368
+
369
+ # Simple keyword matching
370
+ query_lower = query.lower()
371
+ if any(term in query_lower for term in ['ai', 'ml', 'model']):
372
+ return 'ai_startup'
373
+ elif any(term in query_lower for term in ['saas', 'software']):
374
+ return 'saas'
375
+ elif any(term in query_lower for term in ['api', 'service']):
376
+ return 'api_service'
377
+ elif any(term in query_lower for term in ['data', 'analytics']):
378
+ return 'data_analytics'
379
+
380
+ # Default to SaaS if unclear
381
+ return 'saas'
382
+
383
+ def _calculate_confidence(self, result: Dict[str, Any]) -> float:
384
+ """Calculate confidence score based on optimization quality."""
385
+ # Base confidence
386
+ confidence = 0.5
387
+
388
+ # Adjust based on optimization completeness
389
+ if result.get('models'):
390
+ confidence += 0.1
391
+ if result.get('pricing'):
392
+ confidence += 0.1
393
+ if result.get('revenue'):
394
+ confidence += 0.1
395
+ if result.get('value'):
396
+ confidence += 0.1
397
+
398
+ # Adjust based on projected performance
399
+ performance = result.get('performance', {})
400
+ if performance.get('roi', 0) > 2.0:
401
+ confidence += 0.1
402
+ if performance.get('ltv', 0) > 1000:
403
+ confidence += 0.1
404
+
405
+ return min(confidence, 1.0)
406
+
407
+ def _format_strategy(self, result: Dict[str, Any]) -> str:
408
+ """Format monetization strategy into readable text."""
409
+ sections = []
410
+
411
+ # Monetization models
412
+ if 'models' in result:
413
+ models = result['models']
414
+ sections.append("Monetization Models:")
415
+ for model in models:
416
+ sections.append(f"- {model['name']}: {model['type']}")
417
+ if 'pricing_tiers' in model:
418
+ sections.append(" Pricing Tiers:")
419
+ for tier in model['pricing_tiers']:
420
+ sections.append(f" * {tier['name']}: ${tier['price']}/mo")
421
+
422
+ # Revenue optimization
423
+ if 'revenue' in result:
424
+ revenue = result['revenue']
425
+ sections.append("\nRevenue Optimization:")
426
+ for stream, details in revenue.items():
427
+ sections.append(f"- {stream.replace('_', ' ').title()}:")
428
+ sections.append(f" * Projected Revenue: ${details['projected_revenue']:,.2f}")
429
+ sections.append(f" * Growth Rate: {details['growth_rate']*100:.1f}%")
430
+
431
+ # Customer value optimization
432
+ if 'value' in result:
433
+ value = result['value']
434
+ sections.append("\nCustomer Value Optimization:")
435
+ sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}")
436
+ sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}")
437
+ sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%")
438
+
439
+ # Performance projections
440
+ if 'performance' in result:
441
+ perf = result['performance']
442
+ sections.append("\nPerformance Projections:")
443
+ sections.append(f"- ROI: {perf['roi']*100:.1f}%")
444
+ sections.append(f"- Payback Period: {perf['payback_months']:.1f} months")
445
+ sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}")
446
+
447
+ return "\n".join(sections)
reasoning/multimodal.py ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced multimodal reasoning combining different types of information."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class ModalityFeatures:
16
+ """Features extracted from different modalities."""
17
+ text: List[Dict[str, Any]]
18
+ image: Optional[List[Dict[str, Any]]] = None
19
+ audio: Optional[List[Dict[str, Any]]] = None
20
+ video: Optional[List[Dict[str, Any]]] = None
21
+ structured: Optional[List[Dict[str, Any]]] = None
22
+
23
+ class MultiModalReasoning(ReasoningStrategy):
24
+ """
25
+ Advanced multimodal reasoning that:
26
+ 1. Processes different types of information
27
+ 2. Aligns cross-modal features
28
+ 3. Integrates multimodal context
29
+ 4. Generates coherent responses
30
+ 5. Handles uncertainty
31
+ """
32
+
33
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
34
+ """Initialize multimodal reasoning."""
35
+ super().__init__()
36
+ self.config = config or {}
37
+
38
+ # Standard reasoning parameters
39
+ self.min_confidence = self.config.get('min_confidence', 0.7)
40
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
41
+ self.learning_rate = self.config.get('learning_rate', 0.1)
42
+ self.strategy_weights = self.config.get('strategy_weights', {
43
+ "LOCAL_LLM": 0.8,
44
+ "CHAIN_OF_THOUGHT": 0.6,
45
+ "TREE_OF_THOUGHTS": 0.5,
46
+ "META_LEARNING": 0.4
47
+ })
48
+
49
+ # Configure model repositories
50
+ self.models = self.config.get('models', {
51
+ 'img2img': {
52
+ 'repo_id': 'enhanceaiteam/Flux-Uncensored-V2',
53
+ 'filename': 'Flux-Uncensored-V2.safetensors'
54
+ },
55
+ 'img2vid': {
56
+ 'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt',
57
+ 'filename': 'svd_xt.safetensors'
58
+ },
59
+ 'any2any': {
60
+ 'repo_id': 'deepseek-ai/JanusFlow-1.3B',
61
+ 'filename': 'janusflow-1.3b.safetensors'
62
+ }
63
+ })
64
+
65
+ # Configure modality weights
66
+ self.weights = self.config.get('modality_weights', {
67
+ 'text': 0.4,
68
+ 'image': 0.3,
69
+ 'audio': 0.1,
70
+ 'video': 0.1,
71
+ 'structured': 0.1
72
+ })
73
+
74
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
75
+ """
76
+ Apply multimodal reasoning to process and integrate different types of information.
77
+
78
+ Args:
79
+ query: The input query to reason about
80
+ context: Additional context and parameters
81
+
82
+ Returns:
83
+ Dict containing reasoning results and confidence scores
84
+ """
85
+ try:
86
+ # Process across modalities
87
+ modalities = await self._process_modalities(query, context)
88
+
89
+ # Align cross-modal information
90
+ alignment = await self._cross_modal_alignment(modalities, context)
91
+
92
+ # Integrate aligned information
93
+ integration = await self._integrated_analysis(alignment, context)
94
+
95
+ # Generate final response
96
+ response = await self._generate_response(integration, context)
97
+
98
+ return {
99
+ 'answer': response.get('text', ''),
100
+ 'confidence': self._calculate_confidence(integration),
101
+ 'modalities': modalities,
102
+ 'alignment': alignment,
103
+ 'integration': integration
104
+ }
105
+
106
+ except Exception as e:
107
+ logging.error(f"Multimodal reasoning failed: {str(e)}")
108
+ return {
109
+ 'error': f"Multimodal reasoning failed: {str(e)}",
110
+ 'confidence': 0.0
111
+ }
112
+
113
+ async def _process_modalities(
114
+ self,
115
+ query: str,
116
+ context: Dict[str, Any]
117
+ ) -> Dict[str, List[Dict[str, Any]]]:
118
+ """Process query across different modalities."""
119
+ modalities = {}
120
+
121
+ # Process text
122
+ if 'text' in context:
123
+ modalities['text'] = self._process_text(context['text'])
124
+
125
+ # Process images
126
+ if 'images' in context:
127
+ modalities['image'] = self._process_images(context['images'])
128
+
129
+ # Process audio
130
+ if 'audio' in context:
131
+ modalities['audio'] = self._process_audio(context['audio'])
132
+
133
+ # Process video
134
+ if 'video' in context:
135
+ modalities['video'] = self._process_video(context['video'])
136
+
137
+ # Process structured data
138
+ if 'structured' in context:
139
+ modalities['structured'] = self._process_structured(context['structured'])
140
+
141
+ return modalities
142
+
143
+ async def _cross_modal_alignment(
144
+ self,
145
+ modalities: Dict[str, List[Dict[str, Any]]],
146
+ context: Dict[str, Any]
147
+ ) -> List[Dict[str, Any]]:
148
+ """Align information across different modalities."""
149
+ alignments = []
150
+
151
+ # Get all modality pairs
152
+ modality_pairs = [
153
+ (m1, m2) for i, m1 in enumerate(modalities.keys())
154
+ for m2 in list(modalities.keys())[i+1:]
155
+ ]
156
+
157
+ # Align each pair
158
+ for mod1, mod2 in modality_pairs:
159
+ items1 = modalities[mod1]
160
+ items2 = modalities[mod2]
161
+
162
+ # Calculate cross-modal similarities
163
+ for item1 in items1:
164
+ for item2 in items2:
165
+ similarity = self._calculate_similarity(item1, item2)
166
+ if similarity > 0.7: # Alignment threshold
167
+ alignments.append({
168
+ 'modality1': mod1,
169
+ 'modality2': mod2,
170
+ 'item1': item1,
171
+ 'item2': item2,
172
+ 'similarity': similarity
173
+ })
174
+
175
+ return alignments
176
+
177
+ def _calculate_similarity(
178
+ self,
179
+ item1: Dict[str, Any],
180
+ item2: Dict[str, Any]
181
+ ) -> float:
182
+ """Calculate similarity between two items from different modalities."""
183
+ # Simple feature overlap for now
184
+ features1 = set(str(v) for v in item1.values())
185
+ features2 = set(str(v) for v in item2.values())
186
+
187
+ if not features1 or not features2:
188
+ return 0.0
189
+
190
+ overlap = len(features1.intersection(features2))
191
+ total = len(features1.union(features2))
192
+
193
+ return overlap / total if total > 0 else 0.0
194
+
195
+ async def _integrated_analysis(
196
+ self,
197
+ alignment: List[Dict[str, Any]],
198
+ context: Dict[str, Any]
199
+ ) -> List[Dict[str, Any]]:
200
+ """Perform integrated analysis of aligned information."""
201
+ integrated = []
202
+
203
+ # Group alignments by similarity
204
+ similarity_groups = defaultdict(list)
205
+ for align in alignment:
206
+ similarity_groups[align['similarity']].append(align)
207
+
208
+ # Process groups in order of similarity
209
+ for similarity, group in sorted(
210
+ similarity_groups.items(),
211
+ key=lambda x: x[0],
212
+ reverse=True
213
+ ):
214
+ # Combine aligned features
215
+ for align in group:
216
+ integrated.append({
217
+ 'features': {
218
+ **align['item1'],
219
+ **align['item2']
220
+ },
221
+ 'modalities': [align['modality1'], align['modality2']],
222
+ 'confidence': align['similarity']
223
+ })
224
+
225
+ return integrated
226
+
227
+ async def _generate_response(
228
+ self,
229
+ integration: List[Dict[str, Any]],
230
+ context: Dict[str, Any]
231
+ ) -> Dict[str, Any]:
232
+ """Generate coherent response from integrated analysis."""
233
+ if not integration:
234
+ return {'text': '', 'confidence': 0.0}
235
+
236
+ # Combine all integrated features
237
+ all_features = {}
238
+ for item in integration:
239
+ all_features.update(item['features'])
240
+
241
+ # Generate response text
242
+ response_text = []
243
+
244
+ # Add main findings
245
+ response_text.append("Main findings across modalities:")
246
+ for feature, value in all_features.items():
247
+ response_text.append(f"- {feature}: {value}")
248
+
249
+ # Add confidence
250
+ confidence = sum(item['confidence'] for item in integration) / len(integration)
251
+ response_text.append(f"\nOverall confidence: {confidence:.2f}")
252
+
253
+ return {
254
+ 'text': "\n".join(response_text),
255
+ 'confidence': confidence
256
+ }
257
+
258
+ def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float:
259
+ """Calculate overall confidence score."""
260
+ if not integration:
261
+ return 0.0
262
+
263
+ # Base confidence
264
+ confidence = 0.5
265
+
266
+ # Adjust based on number of modalities
267
+ unique_modalities = set()
268
+ for item in integration:
269
+ unique_modalities.update(item['modalities'])
270
+
271
+ modality_bonus = len(unique_modalities) * 0.1
272
+ confidence += min(modality_bonus, 0.3)
273
+
274
+ # Adjust based on integration quality
275
+ avg_similarity = sum(
276
+ item['confidence'] for item in integration
277
+ ) / len(integration)
278
+ confidence += avg_similarity * 0.2
279
+
280
+ return min(confidence, 1.0)
281
+
282
+ def _process_text(self, text: str) -> List[Dict[str, Any]]:
283
+ """Process text modality."""
284
+ # Simple text processing for now
285
+ return [{'text': text}]
286
+
287
+ def _process_images(self, images: List[str]) -> List[Dict[str, Any]]:
288
+ """Process image modality."""
289
+ # Simple image processing for now
290
+ return [{'image': image} for image in images]
291
+
292
+ def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]:
293
+ """Process audio modality."""
294
+ # Simple audio processing for now
295
+ return [{'audio': audio_file} for audio_file in audio]
296
+
297
+ def _process_video(self, video: List[str]) -> List[Dict[str, Any]]:
298
+ """Process video modality."""
299
+ # Simple video processing for now
300
+ return [{'video': video_file} for video_file in video]
301
+
302
+ def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]:
303
+ """Process structured data modality."""
304
+ # Simple structured data processing for now
305
+ return [{'structured': structured}]
reasoning/neurosymbolic.py ADDED
@@ -0,0 +1,316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced neurosymbolic reasoning combining neural and symbolic approaches."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class NeuralFeature:
16
+ """Neural features extracted from data."""
17
+ name: str
18
+ values: np.ndarray
19
+ importance: float
20
+ metadata: Dict[str, Any] = field(default_factory=dict)
21
+
22
+ @dataclass
23
+ class SymbolicRule:
24
+ """Symbolic rule with conditions and confidence."""
25
+ name: str
26
+ conditions: List[str]
27
+ conclusion: str
28
+ confidence: float
29
+ metadata: Dict[str, Any] = field(default_factory=dict)
30
+
31
+ class NeurosymbolicReasoning(ReasoningStrategy):
32
+ """
33
+ Advanced neurosymbolic reasoning that:
34
+ 1. Extracts neural features
35
+ 2. Generates symbolic rules
36
+ 3. Combines approaches
37
+ 4. Handles uncertainty
38
+ 5. Provides interpretable results
39
+ """
40
+
41
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
42
+ """Initialize neurosymbolic reasoning."""
43
+ super().__init__()
44
+ self.config = config or {}
45
+
46
+ # Standard reasoning parameters
47
+ self.min_confidence = self.config.get('min_confidence', 0.7)
48
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
49
+ self.learning_rate = self.config.get('learning_rate', 0.1)
50
+ self.strategy_weights = self.config.get('strategy_weights', {
51
+ "LOCAL_LLM": 0.8,
52
+ "CHAIN_OF_THOUGHT": 0.6,
53
+ "TREE_OF_THOUGHTS": 0.5,
54
+ "META_LEARNING": 0.4
55
+ })
56
+
57
+ # Neurosymbolic specific parameters
58
+ self.feature_threshold = self.config.get('feature_threshold', 0.1)
59
+ self.rule_confidence_threshold = self.config.get('rule_confidence', 0.7)
60
+ self.max_rules = self.config.get('max_rules', 10)
61
+
62
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
63
+ """
64
+ Apply neurosymbolic reasoning to combine neural and symbolic approaches.
65
+
66
+ Args:
67
+ query: The input query to reason about
68
+ context: Additional context and parameters
69
+
70
+ Returns:
71
+ Dict containing reasoning results and confidence scores
72
+ """
73
+ try:
74
+ # Extract neural features
75
+ features = await self._extract_features(query, context)
76
+
77
+ # Generate symbolic rules
78
+ rules = await self._generate_rules(features, context)
79
+
80
+ # Combine approaches
81
+ combined = await self._combine_approaches(features, rules, context)
82
+
83
+ # Generate analysis
84
+ analysis = await self._generate_analysis(combined, context)
85
+
86
+ return {
87
+ 'answer': self._format_analysis(analysis),
88
+ 'confidence': self._calculate_confidence(combined),
89
+ 'features': features,
90
+ 'rules': rules,
91
+ 'combined': combined,
92
+ 'analysis': analysis
93
+ }
94
+
95
+ except Exception as e:
96
+ logging.error(f"Neurosymbolic reasoning failed: {str(e)}")
97
+ return {
98
+ 'error': f"Neurosymbolic reasoning failed: {str(e)}",
99
+ 'confidence': 0.0
100
+ }
101
+
102
+ async def _extract_features(
103
+ self,
104
+ query: str,
105
+ context: Dict[str, Any]
106
+ ) -> List[NeuralFeature]:
107
+ """Extract neural features from input."""
108
+ features = []
109
+
110
+ # Extract key terms
111
+ terms = query.lower().split()
112
+
113
+ # Process each term
114
+ for term in terms:
115
+ # Simple feature extraction for now
116
+ values = np.random.randn(10) # Placeholder for real feature extraction
117
+ importance = np.abs(values).mean()
118
+
119
+ if importance > self.feature_threshold:
120
+ features.append(NeuralFeature(
121
+ name=term,
122
+ values=values,
123
+ importance=importance,
124
+ metadata={'source': 'term_extraction'}
125
+ ))
126
+
127
+ # Sort by importance
128
+ features.sort(key=lambda x: x.importance, reverse=True)
129
+
130
+ return features
131
+
132
+ async def _generate_rules(
133
+ self,
134
+ features: List[NeuralFeature],
135
+ context: Dict[str, Any]
136
+ ) -> List[SymbolicRule]:
137
+ """Generate symbolic rules from features."""
138
+ rules = []
139
+
140
+ # Process feature combinations
141
+ for i, feature1 in enumerate(features):
142
+ for j, feature2 in enumerate(features[i+1:], i+1):
143
+ # Calculate correlation
144
+ correlation = np.corrcoef(feature1.values, feature2.values)[0, 1]
145
+
146
+ if abs(correlation) > self.rule_confidence_threshold:
147
+ # Create rule based on correlation
148
+ if correlation > 0:
149
+ condition = f"{feature1.name} AND {feature2.name}"
150
+ conclusion = "positively_correlated"
151
+ else:
152
+ condition = f"{feature1.name} XOR {feature2.name}"
153
+ conclusion = "negatively_correlated"
154
+
155
+ rules.append(SymbolicRule(
156
+ name=f"rule_{len(rules)}",
157
+ conditions=[condition],
158
+ conclusion=conclusion,
159
+ confidence=abs(correlation),
160
+ metadata={
161
+ 'features': [feature1.name, feature2.name],
162
+ 'correlation': correlation
163
+ }
164
+ ))
165
+
166
+ if len(rules) >= self.max_rules:
167
+ break
168
+
169
+ if len(rules) >= self.max_rules:
170
+ break
171
+
172
+ return rules
173
+
174
+ async def _combine_approaches(
175
+ self,
176
+ features: List[NeuralFeature],
177
+ rules: List[SymbolicRule],
178
+ context: Dict[str, Any]
179
+ ) -> Dict[str, Any]:
180
+ """Combine neural and symbolic approaches."""
181
+ combined = {
182
+ 'neural_weights': {},
183
+ 'symbolic_weights': {},
184
+ 'combined_scores': {}
185
+ }
186
+
187
+ # Calculate neural weights
188
+ total_importance = sum(f.importance for f in features)
189
+ if total_importance > 0:
190
+ combined['neural_weights'] = {
191
+ f.name: f.importance / total_importance
192
+ for f in features
193
+ }
194
+
195
+ # Calculate symbolic weights
196
+ total_confidence = sum(r.confidence for r in rules)
197
+ if total_confidence > 0:
198
+ combined['symbolic_weights'] = {
199
+ r.name: r.confidence / total_confidence
200
+ for r in rules
201
+ }
202
+
203
+ # Combine scores
204
+ all_elements = set(
205
+ list(combined['neural_weights'].keys()) +
206
+ list(combined['symbolic_weights'].keys())
207
+ )
208
+
209
+ for element in all_elements:
210
+ neural_score = combined['neural_weights'].get(element, 0)
211
+ symbolic_score = combined['symbolic_weights'].get(element, 0)
212
+
213
+ # Simple weighted average
214
+ combined['combined_scores'][element] = (
215
+ neural_score * 0.6 + # Favor neural slightly
216
+ symbolic_score * 0.4
217
+ )
218
+
219
+ return combined
220
+
221
+ async def _generate_analysis(
222
+ self,
223
+ combined: Dict[str, Any],
224
+ context: Dict[str, Any]
225
+ ) -> Dict[str, Any]:
226
+ """Generate neurosymbolic analysis."""
227
+ # Sort elements by combined score
228
+ ranked_elements = sorted(
229
+ combined['combined_scores'].items(),
230
+ key=lambda x: x[1],
231
+ reverse=True
232
+ )
233
+
234
+ # Calculate statistics
235
+ scores = list(combined['combined_scores'].values())
236
+ mean = np.mean(scores) if scores else 0
237
+ std = np.std(scores) if scores else 0
238
+
239
+ # Calculate entropy
240
+ entropy = -sum(
241
+ s * np.log2(s) if s > 0 else 0
242
+ for s in combined['combined_scores'].values()
243
+ )
244
+
245
+ return {
246
+ 'top_element': ranked_elements[0][0] if ranked_elements else '',
247
+ 'score': ranked_elements[0][1] if ranked_elements else 0,
248
+ 'alternatives': [
249
+ {'name': name, 'score': score}
250
+ for name, score in ranked_elements[1:]
251
+ ],
252
+ 'statistics': {
253
+ 'mean': mean,
254
+ 'std': std,
255
+ 'entropy': entropy
256
+ }
257
+ }
258
+
259
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
260
+ """Format analysis into readable text."""
261
+ sections = []
262
+
263
+ # Top element
264
+ if analysis['top_element']:
265
+ sections.append(
266
+ f"Most significant element: {analysis['top_element']} "
267
+ f"(score: {analysis['score']:.2%})"
268
+ )
269
+
270
+ # Alternative elements
271
+ if analysis['alternatives']:
272
+ sections.append("\nAlternative elements:")
273
+ for alt in analysis['alternatives']:
274
+ sections.append(
275
+ f"- {alt['name']}: {alt['score']:.2%}"
276
+ )
277
+
278
+ # Statistics
279
+ stats = analysis['statistics']
280
+ sections.append("\nAnalysis statistics:")
281
+ sections.append(f"- Mean score: {stats['mean']:.2%}")
282
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
283
+ sections.append(f"- Information entropy: {stats['entropy']:.2f} bits")
284
+
285
+ return "\n".join(sections)
286
+
287
+ def _calculate_confidence(self, combined: Dict[str, Any]) -> float:
288
+ """Calculate overall confidence score."""
289
+ if not combined['combined_scores']:
290
+ return 0.0
291
+
292
+ # Base confidence
293
+ confidence = 0.5
294
+
295
+ # Get scores
296
+ scores = list(combined['combined_scores'].values())
297
+
298
+ # Strong leading score increases confidence
299
+ max_score = max(scores)
300
+ if max_score > 0.8:
301
+ confidence += 0.3
302
+ elif max_score > 0.6:
303
+ confidence += 0.2
304
+ elif max_score > 0.4:
305
+ confidence += 0.1
306
+
307
+ # Low entropy (clear distinction) increases confidence
308
+ entropy = -sum(s * np.log2(s) if s > 0 else 0 for s in scores)
309
+ max_entropy = -np.log2(1/len(scores)) # Maximum possible entropy
310
+
311
+ if entropy < 0.3 * max_entropy:
312
+ confidence += 0.2
313
+ elif entropy < 0.6 * max_entropy:
314
+ confidence += 0.1
315
+
316
+ return min(confidence, 1.0)
reasoning/portfolio_optimization.py ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Advanced portfolio optimization for venture strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class VentureMetrics:
16
+ """Venture performance metrics."""
17
+ revenue: float
18
+ profit: float
19
+ growth_rate: float
20
+ risk_score: float
21
+ resource_usage: Dict[str, float]
22
+ synergy_score: float
23
+
24
+ @dataclass
25
+ class ResourceAllocation:
26
+ """Resource allocation configuration."""
27
+ venture_id: str
28
+ resources: Dict[str, float]
29
+ constraints: List[str]
30
+ dependencies: List[str]
31
+ priority: float
32
+
33
+ class PortfolioOptimizer:
34
+ """
35
+ Advanced portfolio optimization that:
36
+ 1. Optimizes venture mix
37
+ 2. Allocates resources
38
+ 3. Manages risks
39
+ 4. Maximizes synergies
40
+ 5. Balances growth
41
+ """
42
+
43
+ def __init__(self):
44
+ self.ventures: Dict[str, VentureMetrics] = {}
45
+ self.allocations: Dict[str, ResourceAllocation] = {}
46
+
47
+ async def optimize_portfolio(self,
48
+ ventures: List[str],
49
+ context: Dict[str, Any]) -> Dict[str, Any]:
50
+ """Optimize venture portfolio."""
51
+ try:
52
+ # Analyze ventures
53
+ analysis = await self._analyze_ventures(ventures, context)
54
+
55
+ # Optimize allocation
56
+ allocation = await self._optimize_allocation(analysis, context)
57
+
58
+ # Risk optimization
59
+ risk = await self._optimize_risk(allocation, context)
60
+
61
+ # Synergy optimization
62
+ synergy = await self._optimize_synergies(risk, context)
63
+
64
+ # Performance projections
65
+ projections = await self._project_performance(synergy, context)
66
+
67
+ return {
68
+ "success": projections["annual_profit"] >= 1_000_000,
69
+ "analysis": analysis,
70
+ "allocation": allocation,
71
+ "risk": risk,
72
+ "synergy": synergy,
73
+ "projections": projections
74
+ }
75
+ except Exception as e:
76
+ logging.error(f"Error in portfolio optimization: {str(e)}")
77
+ return {"success": False, "error": str(e)}
78
+
79
+ async def _analyze_ventures(self,
80
+ ventures: List[str],
81
+ context: Dict[str, Any]) -> Dict[str, Any]:
82
+ """Analyze venture characteristics."""
83
+ prompt = f"""
84
+ Analyze ventures:
85
+ Ventures: {json.dumps(ventures)}
86
+ Context: {json.dumps(context)}
87
+
88
+ Analyze:
89
+ 1. Performance metrics
90
+ 2. Resource requirements
91
+ 3. Risk factors
92
+ 4. Growth potential
93
+ 5. Synergy opportunities
94
+
95
+ Format as:
96
+ [Venture1]
97
+ Metrics: ...
98
+ Resources: ...
99
+ Risks: ...
100
+ Growth: ...
101
+ Synergies: ...
102
+ """
103
+
104
+ response = await context["groq_api"].predict(prompt)
105
+ return self._parse_venture_analysis(response["answer"])
106
+
107
+ async def _optimize_allocation(self,
108
+ analysis: Dict[str, Any],
109
+ context: Dict[str, Any]) -> Dict[str, Any]:
110
+ """Optimize resource allocation."""
111
+ prompt = f"""
112
+ Optimize resource allocation:
113
+ Analysis: {json.dumps(analysis)}
114
+ Context: {json.dumps(context)}
115
+
116
+ Optimize for:
117
+ 1. Resource efficiency
118
+ 2. Growth potential
119
+ 3. Risk balance
120
+ 4. Synergy capture
121
+ 5. Constraint satisfaction
122
+
123
+ Format as:
124
+ [Allocation1]
125
+ Venture: ...
126
+ Resources: ...
127
+ Constraints: ...
128
+ Dependencies: ...
129
+ Priority: ...
130
+ """
131
+
132
+ response = await context["groq_api"].predict(prompt)
133
+ return self._parse_allocation_optimization(response["answer"])
134
+
135
+ async def _optimize_risk(self,
136
+ allocation: Dict[str, Any],
137
+ context: Dict[str, Any]) -> Dict[str, Any]:
138
+ """Optimize risk management."""
139
+ prompt = f"""
140
+ Optimize risk management:
141
+ Allocation: {json.dumps(allocation)}
142
+ Context: {json.dumps(context)}
143
+
144
+ Optimize for:
145
+ 1. Risk diversification
146
+ 2. Exposure limits
147
+ 3. Correlation management
148
+ 4. Hedging strategies
149
+ 5. Contingency planning
150
+
151
+ Format as:
152
+ [Risk1]
153
+ Type: ...
154
+ Exposure: ...
155
+ Mitigation: ...
156
+ Contingency: ...
157
+ Impact: ...
158
+ """
159
+
160
+ response = await context["groq_api"].predict(prompt)
161
+ return self._parse_risk_optimization(response["answer"])
162
+
163
+ async def _optimize_synergies(self,
164
+ risk: Dict[str, Any],
165
+ context: Dict[str, Any]) -> Dict[str, Any]:
166
+ """Optimize portfolio synergies."""
167
+ prompt = f"""
168
+ Optimize synergies:
169
+ Risk: {json.dumps(risk)}
170
+ Context: {json.dumps(context)}
171
+
172
+ Optimize for:
173
+ 1. Resource sharing
174
+ 2. Knowledge transfer
175
+ 3. Market leverage
176
+ 4. Technology reuse
177
+ 5. Customer cross-sell
178
+
179
+ Format as:
180
+ [Synergy1]
181
+ Type: ...
182
+ Ventures: ...
183
+ Potential: ...
184
+ Requirements: ...
185
+ Timeline: ...
186
+ """
187
+
188
+ response = await context["groq_api"].predict(prompt)
189
+ return self._parse_synergy_optimization(response["answer"])
190
+
191
+ async def _project_performance(self,
192
+ synergy: Dict[str, Any],
193
+ context: Dict[str, Any]) -> Dict[str, Any]:
194
+ """Project portfolio performance."""
195
+ prompt = f"""
196
+ Project performance:
197
+ Synergy: {json.dumps(synergy)}
198
+ Context: {json.dumps(context)}
199
+
200
+ Project:
201
+ 1. Revenue growth
202
+ 2. Profit margins
203
+ 3. Resource utilization
204
+ 4. Risk metrics
205
+ 5. Synergy capture
206
+
207
+ Format as:
208
+ [Projections]
209
+ Revenue: ...
210
+ Profit: ...
211
+ Resources: ...
212
+ Risk: ...
213
+ Synergies: ...
214
+ """
215
+
216
+ response = await context["groq_api"].predict(prompt)
217
+ return self._parse_performance_projections(response["answer"])
218
+
219
+ def _calculate_portfolio_metrics(self) -> Dict[str, float]:
220
+ """Calculate comprehensive portfolio metrics."""
221
+ if not self.ventures:
222
+ return {
223
+ "total_revenue": 0.0,
224
+ "total_profit": 0.0,
225
+ "avg_growth": 0.0,
226
+ "avg_risk": 0.0,
227
+ "resource_efficiency": 0.0,
228
+ "synergy_capture": 0.0
229
+ }
230
+
231
+ metrics = {
232
+ "total_revenue": sum(v.revenue for v in self.ventures.values()),
233
+ "total_profit": sum(v.profit for v in self.ventures.values()),
234
+ "avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]),
235
+ "avg_risk": np.mean([v.risk_score for v in self.ventures.values()]),
236
+ "resource_efficiency": self._calculate_resource_efficiency(),
237
+ "synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()])
238
+ }
239
+
240
+ return metrics
241
+
242
+ def _calculate_resource_efficiency(self) -> float:
243
+ """Calculate resource utilization efficiency."""
244
+ if not self.ventures or not self.allocations:
245
+ return 0.0
246
+
247
+ total_resources = defaultdict(float)
248
+ used_resources = defaultdict(float)
249
+
250
+ # Sum up total and used resources
251
+ for venture_id, allocation in self.allocations.items():
252
+ for resource, amount in allocation.resources.items():
253
+ total_resources[resource] += amount
254
+ if venture_id in self.ventures:
255
+ used_resources[resource] += (
256
+ amount * self.ventures[venture_id].resource_usage.get(resource, 0)
257
+ )
258
+
259
+ # Calculate efficiency for each resource
260
+ efficiencies = []
261
+ for resource in total_resources:
262
+ if total_resources[resource] > 0:
263
+ efficiency = used_resources[resource] / total_resources[resource]
264
+ efficiencies.append(efficiency)
265
+
266
+ return np.mean(efficiencies) if efficiencies else 0.0
267
+
268
+ def get_portfolio_insights(self) -> Dict[str, Any]:
269
+ """Get comprehensive portfolio insights."""
270
+ metrics = self._calculate_portfolio_metrics()
271
+
272
+ return {
273
+ "portfolio_metrics": metrics,
274
+ "venture_metrics": {
275
+ venture_id: {
276
+ "revenue": v.revenue,
277
+ "profit": v.profit,
278
+ "growth_rate": v.growth_rate,
279
+ "risk_score": v.risk_score,
280
+ "synergy_score": v.synergy_score
281
+ }
282
+ for venture_id, v in self.ventures.items()
283
+ },
284
+ "resource_allocation": {
285
+ venture_id: {
286
+ "resources": a.resources,
287
+ "priority": a.priority,
288
+ "constraints": len(a.constraints),
289
+ "dependencies": len(a.dependencies)
290
+ }
291
+ for venture_id, a in self.allocations.items()
292
+ },
293
+ "risk_profile": {
294
+ "portfolio_risk": metrics["avg_risk"],
295
+ "risk_concentration": self._calculate_risk_concentration(),
296
+ "risk_correlation": self._calculate_risk_correlation()
297
+ },
298
+ "optimization_opportunities": self._identify_optimization_opportunities()
299
+ }
300
+
301
+ def _calculate_risk_concentration(self) -> float:
302
+ """Calculate risk concentration in portfolio."""
303
+ if not self.ventures:
304
+ return 0.0
305
+
306
+ risk_weights = [v.risk_score for v in self.ventures.values()]
307
+ return np.std(risk_weights) if len(risk_weights) > 1 else 0.0
308
+
309
+ def _calculate_risk_correlation(self) -> float:
310
+ """Calculate risk correlation between ventures."""
311
+ if len(self.ventures) < 2:
312
+ return 0.0
313
+
314
+ # Create correlation matrix of risk scores and resource usage
315
+ venture_metrics = [
316
+ [v.risk_score] + list(v.resource_usage.values())
317
+ for v in self.ventures.values()
318
+ ]
319
+
320
+ correlation_matrix = np.corrcoef(venture_metrics)
321
+ return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)])
322
+
323
+ def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]:
324
+ """Identify portfolio optimization opportunities."""
325
+ opportunities = []
326
+
327
+ # Resource optimization opportunities
328
+ resource_efficiency = self._calculate_resource_efficiency()
329
+ if resource_efficiency < 0.8:
330
+ opportunities.append({
331
+ "type": "resource_optimization",
332
+ "potential": 1.0 - resource_efficiency,
333
+ "description": "Improve resource utilization efficiency"
334
+ })
335
+
336
+ # Risk optimization opportunities
337
+ risk_concentration = self._calculate_risk_concentration()
338
+ if risk_concentration > 0.2:
339
+ opportunities.append({
340
+ "type": "risk_diversification",
341
+ "potential": risk_concentration,
342
+ "description": "Reduce risk concentration"
343
+ })
344
+
345
+ # Synergy optimization opportunities
346
+ avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0
347
+ if avg_synergy < 0.7:
348
+ opportunities.append({
349
+ "type": "synergy_capture",
350
+ "potential": 1.0 - avg_synergy,
351
+ "description": "Increase synergy capture"
352
+ })
353
+
354
+ return opportunities
355
+
356
+ class PortfolioOptimizationStrategy(ReasoningStrategy):
357
+ """
358
+ Advanced portfolio optimization strategy that:
359
+ 1. Analyzes venture metrics
360
+ 2. Optimizes resource allocation
361
+ 3. Balances risk-reward
362
+ 4. Maximizes portfolio synergies
363
+ 5. Provides actionable recommendations
364
+ """
365
+
366
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
367
+ """Initialize portfolio optimization strategy."""
368
+ super().__init__()
369
+ self.config = config or {}
370
+ self.optimizer = PortfolioOptimizer()
371
+
372
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
373
+ """
374
+ Generate portfolio optimization strategy based on query and context.
375
+
376
+ Args:
377
+ query: The portfolio optimization query
378
+ context: Additional context and parameters
379
+
380
+ Returns:
381
+ Dict containing optimization strategy and confidence scores
382
+ """
383
+ try:
384
+ # Extract portfolio parameters
385
+ params = self._extract_parameters(query, context)
386
+
387
+ # Optimize portfolio
388
+ optimization_result = self.optimizer.optimize_portfolio(
389
+ ventures=params.get('ventures', []),
390
+ constraints=params.get('constraints', []),
391
+ objectives=params.get('objectives', [])
392
+ )
393
+
394
+ # Get metrics
395
+ metrics = self.optimizer.get_portfolio_metrics()
396
+
397
+ # Generate recommendations
398
+ recommendations = self._generate_recommendations(
399
+ optimization_result,
400
+ metrics
401
+ )
402
+
403
+ return {
404
+ 'answer': self._format_strategy(optimization_result, metrics, recommendations),
405
+ 'confidence': self._calculate_confidence(optimization_result),
406
+ 'optimization': optimization_result,
407
+ 'metrics': metrics,
408
+ 'recommendations': recommendations
409
+ }
410
+
411
+ except Exception as e:
412
+ logging.error(f"Portfolio optimization failed: {str(e)}")
413
+ return {
414
+ 'error': f"Portfolio optimization failed: {str(e)}",
415
+ 'confidence': 0.0
416
+ }
417
+
418
+ def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
419
+ """Extract optimization parameters from query and context."""
420
+ params = {}
421
+
422
+ # Extract ventures
423
+ if 'ventures' in context:
424
+ params['ventures'] = context['ventures']
425
+ else:
426
+ # Default empty portfolio
427
+ params['ventures'] = []
428
+
429
+ # Extract constraints
430
+ if 'constraints' in context:
431
+ params['constraints'] = context['constraints']
432
+ else:
433
+ # Default constraints
434
+ params['constraints'] = [
435
+ 'budget_limit',
436
+ 'risk_tolerance',
437
+ 'resource_capacity'
438
+ ]
439
+
440
+ # Extract objectives
441
+ if 'objectives' in context:
442
+ params['objectives'] = context['objectives']
443
+ else:
444
+ # Default objectives
445
+ params['objectives'] = [
446
+ 'maximize_returns',
447
+ 'minimize_risk',
448
+ 'maximize_synergies'
449
+ ]
450
+
451
+ return params
452
+
453
+ def _generate_recommendations(
454
+ self,
455
+ optimization_result: Dict[str, Any],
456
+ metrics: Dict[str, Any]
457
+ ) -> List[str]:
458
+ """Generate actionable recommendations."""
459
+ recommendations = []
460
+
461
+ # Portfolio composition recommendations
462
+ if 'allocation' in optimization_result:
463
+ allocation = optimization_result['allocation']
464
+ recommendations.extend([
465
+ f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}"
466
+ for alloc in allocation
467
+ ])
468
+
469
+ # Risk management recommendations
470
+ if 'risk_analysis' in metrics:
471
+ risk = metrics['risk_analysis']
472
+ if risk.get('total_risk', 0) > 0.7:
473
+ recommendations.append(
474
+ "Consider reducing exposure to high-risk ventures"
475
+ )
476
+ if risk.get('correlation', 0) > 0.8:
477
+ recommendations.append(
478
+ "Increase portfolio diversification to reduce correlation"
479
+ )
480
+
481
+ # Performance optimization recommendations
482
+ if 'performance' in metrics:
483
+ perf = metrics['performance']
484
+ if perf.get('sharpe_ratio', 0) < 1.0:
485
+ recommendations.append(
486
+ "Optimize risk-adjusted returns through better venture selection"
487
+ )
488
+ if perf.get('efficiency', 0) < 0.8:
489
+ recommendations.append(
490
+ "Improve resource allocation efficiency across ventures"
491
+ )
492
+
493
+ return recommendations
494
+
495
+ def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float:
496
+ """Calculate confidence score based on optimization quality."""
497
+ # Base confidence
498
+ confidence = 0.5
499
+
500
+ # Adjust based on optimization completeness
501
+ if optimization_result.get('allocation'):
502
+ confidence += 0.1
503
+ if optimization_result.get('risk_analysis'):
504
+ confidence += 0.1
505
+ if optimization_result.get('performance_metrics'):
506
+ confidence += 0.1
507
+
508
+ # Adjust based on solution quality
509
+ if optimization_result.get('convergence_status') == 'optimal':
510
+ confidence += 0.2
511
+ elif optimization_result.get('convergence_status') == 'suboptimal':
512
+ confidence += 0.1
513
+
514
+ return min(confidence, 1.0)
515
+
516
+ def _format_strategy(
517
+ self,
518
+ optimization_result: Dict[str, Any],
519
+ metrics: Dict[str, Any],
520
+ recommendations: List[str]
521
+ ) -> str:
522
+ """Format optimization strategy into readable text."""
523
+ sections = []
524
+
525
+ # Portfolio allocation
526
+ if 'allocation' in optimization_result:
527
+ allocation = optimization_result['allocation']
528
+ sections.append("Portfolio Allocation:")
529
+ for alloc in allocation:
530
+ sections.append(
531
+ f"- {alloc['venture']}: {alloc['percentage']:.1f}%"
532
+ )
533
+
534
+ # Key metrics
535
+ if metrics:
536
+ sections.append("\nKey Metrics:")
537
+ for key, value in metrics.items():
538
+ if isinstance(value, (int, float)):
539
+ sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
540
+ else:
541
+ sections.append(f"- {key.replace('_', ' ').title()}: {value}")
542
+
543
+ # Recommendations
544
+ if recommendations:
545
+ sections.append("\nKey Recommendations:")
546
+ for rec in recommendations:
547
+ sections.append(f"- {rec}")
548
+
549
+ return "\n".join(sections)
reasoning/quantum.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Quantum-inspired reasoning implementations."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ @dataclass
15
+ class QuantumState:
16
+ """Quantum state with superposition and entanglement."""
17
+ name: str
18
+ amplitude: complex
19
+ phase: float
20
+ entangled_states: List[str] = field(default_factory=list)
21
+
22
+ class QuantumReasoning(ReasoningStrategy):
23
+ """
24
+ Advanced quantum reasoning that:
25
+ 1. Creates quantum states
26
+ 2. Applies quantum operations
27
+ 3. Measures outcomes
28
+ 4. Handles superposition
29
+ 5. Models entanglement
30
+ """
31
+
32
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
33
+ """Initialize quantum reasoning."""
34
+ super().__init__()
35
+ self.config = config or {}
36
+
37
+ # Standard reasoning parameters
38
+ self.min_confidence = self.config.get('min_confidence', 0.7)
39
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
40
+ self.learning_rate = self.config.get('learning_rate', 0.1)
41
+ self.strategy_weights = self.config.get('strategy_weights', {
42
+ "LOCAL_LLM": 0.8,
43
+ "CHAIN_OF_THOUGHT": 0.6,
44
+ "TREE_OF_THOUGHTS": 0.5,
45
+ "META_LEARNING": 0.4
46
+ })
47
+
48
+ # Configure quantum parameters
49
+ self.num_qubits = self.config.get('num_qubits', 3)
50
+ self.measurement_threshold = self.config.get('measurement_threshold', 0.1)
51
+ self.decoherence_rate = self.config.get('decoherence_rate', 0.01)
52
+
53
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
54
+ """
55
+ Apply quantum reasoning to analyze complex decisions.
56
+
57
+ Args:
58
+ query: The input query to reason about
59
+ context: Additional context and parameters
60
+
61
+ Returns:
62
+ Dict containing reasoning results and confidence scores
63
+ """
64
+ try:
65
+ # Initialize quantum states
66
+ states = await self._initialize_states(query, context)
67
+
68
+ # Apply quantum operations
69
+ evolved_states = await self._apply_operations(states, context)
70
+
71
+ # Measure outcomes
72
+ measurements = await self._measure_states(evolved_states, context)
73
+
74
+ # Generate analysis
75
+ analysis = await self._generate_analysis(measurements, context)
76
+
77
+ return {
78
+ 'answer': self._format_analysis(analysis),
79
+ 'confidence': self._calculate_confidence(measurements),
80
+ 'states': states,
81
+ 'evolved_states': evolved_states,
82
+ 'measurements': measurements,
83
+ 'analysis': analysis
84
+ }
85
+
86
+ except Exception as e:
87
+ logging.error(f"Quantum reasoning failed: {str(e)}")
88
+ return {
89
+ 'error': f"Quantum reasoning failed: {str(e)}",
90
+ 'confidence': 0.0
91
+ }
92
+
93
+ async def _initialize_states(
94
+ self,
95
+ query: str,
96
+ context: Dict[str, Any]
97
+ ) -> List[QuantumState]:
98
+ """Initialize quantum states."""
99
+ states = []
100
+
101
+ # Extract key terms for state initialization
102
+ terms = set(query.lower().split())
103
+
104
+ # Create quantum states based on terms
105
+ for i, term in enumerate(terms):
106
+ if i >= self.num_qubits:
107
+ break
108
+
109
+ # Calculate initial amplitude and phase
110
+ amplitude = 1.0 / np.sqrt(len(terms[:self.num_qubits]))
111
+ phase = 2 * np.pi * i / len(terms[:self.num_qubits])
112
+
113
+ states.append(QuantumState(
114
+ name=term,
115
+ amplitude=complex(amplitude * np.cos(phase), amplitude * np.sin(phase)),
116
+ phase=phase
117
+ ))
118
+
119
+ # Create entangled states if specified
120
+ if context.get('entangle', False):
121
+ self._entangle_states(states)
122
+
123
+ return states
124
+
125
+ async def _apply_operations(
126
+ self,
127
+ states: List[QuantumState],
128
+ context: Dict[str, Any]
129
+ ) -> List[QuantumState]:
130
+ """Apply quantum operations to states."""
131
+ evolved_states = []
132
+
133
+ # Get operation parameters
134
+ rotation = context.get('rotation', 0.0)
135
+ phase_shift = context.get('phase_shift', 0.0)
136
+
137
+ for state in states:
138
+ # Apply rotation
139
+ rotated_amplitude = state.amplitude * np.exp(1j * rotation)
140
+
141
+ # Apply phase shift
142
+ shifted_phase = (state.phase + phase_shift) % (2 * np.pi)
143
+
144
+ # Apply decoherence
145
+ decohered_amplitude = rotated_amplitude * (1 - self.decoherence_rate)
146
+
147
+ evolved_states.append(QuantumState(
148
+ name=state.name,
149
+ amplitude=decohered_amplitude,
150
+ phase=shifted_phase,
151
+ entangled_states=state.entangled_states.copy()
152
+ ))
153
+
154
+ return evolved_states
155
+
156
+ async def _measure_states(
157
+ self,
158
+ states: List[QuantumState],
159
+ context: Dict[str, Any]
160
+ ) -> Dict[str, float]:
161
+ """Measure quantum states."""
162
+ measurements = {}
163
+
164
+ # Calculate total probability
165
+ total_probability = sum(
166
+ abs(state.amplitude) ** 2
167
+ for state in states
168
+ )
169
+
170
+ if total_probability > 0:
171
+ # Normalize and store measurements
172
+ for state in states:
173
+ probability = (abs(state.amplitude) ** 2) / total_probability
174
+ if probability > self.measurement_threshold:
175
+ measurements[state.name] = probability
176
+
177
+ return measurements
178
+
179
+ def _entangle_states(self, states: List[QuantumState]) -> None:
180
+ """Create entanglement between states."""
181
+ if len(states) < 2:
182
+ return
183
+
184
+ # Simple entanglement: connect adjacent states
185
+ for i in range(len(states) - 1):
186
+ states[i].entangled_states.append(states[i + 1].name)
187
+ states[i + 1].entangled_states.append(states[i].name)
188
+
189
+ async def _generate_analysis(
190
+ self,
191
+ measurements: Dict[str, float],
192
+ context: Dict[str, Any]
193
+ ) -> Dict[str, Any]:
194
+ """Generate quantum analysis."""
195
+ # Sort states by measurement probability
196
+ ranked_states = sorted(
197
+ measurements.items(),
198
+ key=lambda x: x[1],
199
+ reverse=True
200
+ )
201
+
202
+ # Calculate quantum statistics
203
+ amplitudes = list(measurements.values())
204
+ mean = np.mean(amplitudes) if amplitudes else 0
205
+ std = np.std(amplitudes) if amplitudes else 0
206
+
207
+ # Calculate quantum entropy
208
+ entropy = -sum(
209
+ p * np.log2(p) if p > 0 else 0
210
+ for p in measurements.values()
211
+ )
212
+
213
+ return {
214
+ 'top_state': ranked_states[0][0] if ranked_states else '',
215
+ 'probability': ranked_states[0][1] if ranked_states else 0,
216
+ 'alternatives': [
217
+ {'name': name, 'probability': prob}
218
+ for name, prob in ranked_states[1:]
219
+ ],
220
+ 'statistics': {
221
+ 'mean': mean,
222
+ 'std': std,
223
+ 'entropy': entropy
224
+ }
225
+ }
226
+
227
+ def _format_analysis(self, analysis: Dict[str, Any]) -> str:
228
+ """Format analysis into readable text."""
229
+ sections = []
230
+
231
+ # Top quantum state
232
+ if analysis['top_state']:
233
+ sections.append(
234
+ f"Most probable quantum state: {analysis['top_state']} "
235
+ f"(probability: {analysis['probability']:.2%})"
236
+ )
237
+
238
+ # Alternative states
239
+ if analysis['alternatives']:
240
+ sections.append("\nAlternative quantum states:")
241
+ for alt in analysis['alternatives']:
242
+ sections.append(
243
+ f"- {alt['name']}: {alt['probability']:.2%}"
244
+ )
245
+
246
+ # Quantum statistics
247
+ stats = analysis['statistics']
248
+ sections.append("\nQuantum statistics:")
249
+ sections.append(f"- Mean amplitude: {stats['mean']:.2%}")
250
+ sections.append(f"- Standard deviation: {stats['std']:.2%}")
251
+ sections.append(f"- Quantum entropy: {stats['entropy']:.2f} bits")
252
+
253
+ return "\n".join(sections)
254
+
255
+ def _calculate_confidence(self, measurements: Dict[str, float]) -> float:
256
+ """Calculate overall confidence score."""
257
+ if not measurements:
258
+ return 0.0
259
+
260
+ # Base confidence
261
+ confidence = 0.5
262
+
263
+ # Adjust based on measurement distribution
264
+ probs = list(measurements.values())
265
+
266
+ # Strong leading measurement increases confidence
267
+ max_prob = max(probs)
268
+ if max_prob > 0.8:
269
+ confidence += 0.3
270
+ elif max_prob > 0.6:
271
+ confidence += 0.2
272
+ elif max_prob > 0.4:
273
+ confidence += 0.1
274
+
275
+ # Low entropy (clear distinction) increases confidence
276
+ entropy = -sum(p * np.log2(p) if p > 0 else 0 for p in probs)
277
+ max_entropy = -np.log2(1/len(probs)) # Maximum possible entropy
278
+
279
+ if entropy < 0.3 * max_entropy:
280
+ confidence += 0.2
281
+ elif entropy < 0.6 * max_entropy:
282
+ confidence += 0.1
283
+
284
+ return min(confidence, 1.0)
285
+
286
+
287
+ class QuantumInspiredStrategy(ReasoningStrategy):
288
+ """Implements Quantum-Inspired reasoning."""
289
+
290
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
291
+ try:
292
+ # Create a clean context for serialization
293
+ clean_context = {k: v for k, v in context.items() if k != "groq_api"}
294
+
295
+ prompt = f"""
296
+ You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
297
+
298
+ Problem Type:
299
+ Query: {query}
300
+ Context: {json.dumps(clean_context)}
301
+
302
+ Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
303
+
304
+ PROBLEM ANALYSIS:
305
+ - [First key aspect or complexity factor]
306
+ - [Second key aspect or complexity factor]
307
+ - [Third key aspect or complexity factor]
308
+
309
+ SOLUTION PATHS:
310
+ - Path 1: [Specific solution approach]
311
+ - Path 2: [Alternative solution approach]
312
+ - Path 3: [Another alternative approach]
313
+
314
+ META INSIGHTS:
315
+ - Learning 1: [Key insight about the problem space]
316
+ - Learning 2: [Key insight about solution approaches]
317
+ - Learning 3: [Key insight about trade-offs]
318
+
319
+ CONCLUSION:
320
+ [Final synthesized solution incorporating meta-learnings]
321
+ """
322
+
323
+ response = await context["groq_api"].predict(prompt)
324
+
325
+ if not response["success"]:
326
+ return response
327
+
328
+ # Parse response into components
329
+ lines = response["answer"].split("\n")
330
+ problem_analysis = []
331
+ solution_paths = []
332
+ meta_insights = []
333
+ conclusion = ""
334
+
335
+ section = None
336
+ for line in lines:
337
+ line = line.strip()
338
+ if not line:
339
+ continue
340
+
341
+ if "PROBLEM ANALYSIS:" in line:
342
+ section = "analysis"
343
+ elif "SOLUTION PATHS:" in line:
344
+ section = "paths"
345
+ elif "META INSIGHTS:" in line:
346
+ section = "insights"
347
+ elif "CONCLUSION:" in line:
348
+ section = "conclusion"
349
+ elif line.startswith("-"):
350
+ content = line.lstrip("- ").strip()
351
+ if section == "analysis":
352
+ problem_analysis.append(content)
353
+ elif section == "paths":
354
+ solution_paths.append(content)
355
+ elif section == "insights":
356
+ meta_insights.append(content)
357
+ elif section == "conclusion":
358
+ conclusion += line + " "
359
+
360
+ return {
361
+ "success": True,
362
+ "problem_analysis": problem_analysis,
363
+ "solution_paths": solution_paths,
364
+ "meta_insights": meta_insights,
365
+ "conclusion": conclusion.strip(),
366
+ # Add standard fields for compatibility
367
+ "reasoning_path": problem_analysis + solution_paths + meta_insights,
368
+ "conclusion": conclusion.strip()
369
+ }
370
+
371
+ except Exception as e:
372
+ return {"success": False, "error": str(e)}
reasoning/recursive.py ADDED
@@ -0,0 +1,576 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Recursive reasoning implementation with advanced decomposition and synthesis."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class SubproblemType(Enum):
15
+ """Types of subproblems in recursive reasoning."""
16
+ ATOMIC = "atomic"
17
+ COMPOSITE = "composite"
18
+ PARALLEL = "parallel"
19
+ SEQUENTIAL = "sequential"
20
+ CONDITIONAL = "conditional"
21
+ ITERATIVE = "iterative"
22
+
23
+ class SolutionStatus(Enum):
24
+ """Status of subproblem solutions."""
25
+ PENDING = "pending"
26
+ IN_PROGRESS = "in_progress"
27
+ SOLVED = "solved"
28
+ FAILED = "failed"
29
+ BLOCKED = "blocked"
30
+ OPTIMIZING = "optimizing"
31
+
32
+ @dataclass
33
+ class Subproblem:
34
+ """Represents a subproblem in recursive reasoning."""
35
+ id: str
36
+ type: SubproblemType
37
+ query: str
38
+ context: Dict[str, Any]
39
+ parent_id: Optional[str]
40
+ children: List[str]
41
+ status: SolutionStatus
42
+ solution: Optional[Dict[str, Any]]
43
+ confidence: float
44
+ dependencies: List[str]
45
+ metadata: Dict[str, Any] = field(default_factory=dict)
46
+
47
+ @dataclass
48
+ class RecursiveStep:
49
+ """Represents a step in recursive reasoning."""
50
+ id: str
51
+ subproblem_id: str
52
+ action: str
53
+ timestamp: datetime
54
+ result: Optional[Dict[str, Any]]
55
+ metrics: Dict[str, float]
56
+ metadata: Dict[str, Any] = field(default_factory=dict)
57
+
58
+ class RecursiveReasoning(ReasoningStrategy):
59
+ """
60
+ Advanced Recursive Reasoning implementation with:
61
+ - Dynamic problem decomposition
62
+ - Parallel subproblem solving
63
+ - Solution synthesis
64
+ - Cycle detection
65
+ - Optimization strategies
66
+ """
67
+
68
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
69
+ """Initialize recursive reasoning."""
70
+ super().__init__()
71
+ self.config = config or {}
72
+
73
+ # Standard reasoning parameters
74
+ self.min_confidence = self.config.get('min_confidence', 0.7)
75
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
76
+ self.learning_rate = self.config.get('learning_rate', 0.1)
77
+ self.strategy_weights = self.config.get('strategy_weights', {
78
+ "LOCAL_LLM": 0.8,
79
+ "CHAIN_OF_THOUGHT": 0.6,
80
+ "TREE_OF_THOUGHTS": 0.5,
81
+ "META_LEARNING": 0.4
82
+ })
83
+
84
+ # Recursive reasoning specific parameters
85
+ self.max_depth = self.config.get('max_depth', 5)
86
+ self.optimization_rounds = self.config.get('optimization_rounds', 2)
87
+
88
+ # Problem tracking
89
+ self.subproblems: Dict[str, Subproblem] = {}
90
+ self.steps: List[RecursiveStep] = []
91
+ self.solution_cache: Dict[str, Dict[str, Any]] = {}
92
+ self.cycle_detection: Set[str] = set()
93
+
94
+ # Performance metrics
95
+ self.depth_distribution: Dict[int, int] = defaultdict(int)
96
+ self.type_distribution: Dict[SubproblemType, int] = defaultdict(int)
97
+ self.success_rate: Dict[SubproblemType, float] = defaultdict(float)
98
+
99
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
100
+ """Main reasoning method implementing recursive reasoning."""
101
+ try:
102
+ # Initialize root problem
103
+ root = await self._initialize_problem(query, context)
104
+ self.subproblems[root.id] = root
105
+
106
+ # Recursively solve
107
+ solution = await self._solve_recursive(root.id, depth=0)
108
+
109
+ # Optimize solution
110
+ optimized = await self._optimize_solution(solution, root, context)
111
+
112
+ # Update metrics
113
+ self._update_metrics(root.id)
114
+
115
+ return {
116
+ "success": True,
117
+ "answer": optimized["answer"],
118
+ "confidence": optimized["confidence"],
119
+ "decomposition": self._get_problem_tree(root.id),
120
+ "solution_trace": self._get_solution_trace(root.id),
121
+ "performance_metrics": self._get_performance_metrics(),
122
+ "meta_insights": optimized["meta_insights"]
123
+ }
124
+ except Exception as e:
125
+ logging.error(f"Error in recursive reasoning: {str(e)}")
126
+ return {"success": False, "error": str(e)}
127
+
128
+ async def _initialize_problem(self, query: str, context: Dict[str, Any]) -> Subproblem:
129
+ """Initialize the root problem."""
130
+ prompt = f"""
131
+ Initialize recursive reasoning problem:
132
+ Query: {query}
133
+ Context: {json.dumps(context)}
134
+
135
+ Analyze for:
136
+ 1. Problem type classification
137
+ 2. Initial decomposition strategy
138
+ 3. Key dependencies
139
+ 4. Solution approach
140
+
141
+ Format as:
142
+ [Problem]
143
+ Type: ...
144
+ Strategy: ...
145
+ Dependencies: ...
146
+ Approach: ...
147
+ """
148
+
149
+ response = await context["groq_api"].predict(prompt)
150
+ return self._parse_problem_init(response["answer"], query, context)
151
+
152
+ async def _decompose_problem(self, problem: Subproblem, context: Dict[str, Any]) -> List[Subproblem]:
153
+ """Decompose a problem into subproblems."""
154
+ prompt = f"""
155
+ Decompose problem into subproblems:
156
+ Problem: {json.dumps(self._problem_to_dict(problem))}
157
+ Context: {json.dumps(context)}
158
+
159
+ For each subproblem specify:
160
+ 1. [Type]: {" | ".join([t.value for t in SubproblemType])}
161
+ 2. [Query]: Specific question
162
+ 3. [Dependencies]: Required solutions
163
+ 4. [Approach]: Solution strategy
164
+
165
+ Format as:
166
+ [S1]
167
+ Type: ...
168
+ Query: ...
169
+ Dependencies: ...
170
+ Approach: ...
171
+ """
172
+
173
+ response = await context["groq_api"].predict(prompt)
174
+ return self._parse_subproblems(response["answer"], problem.id, context)
175
+
176
+ async def _solve_recursive(self, problem_id: str, depth: int) -> Dict[str, Any]:
177
+ """Recursively solve a problem and its subproblems."""
178
+ if depth > self.max_depth:
179
+ return {"success": False, "error": "Maximum recursion depth exceeded"}
180
+
181
+ if problem_id in self.cycle_detection:
182
+ return {"success": False, "error": "Cycle detected in recursive solving"}
183
+
184
+ problem = self.subproblems[problem_id]
185
+ self.cycle_detection.add(problem_id)
186
+ self.depth_distribution[depth] += 1
187
+
188
+ try:
189
+ # Check cache
190
+ cache_key = f"{problem.query}:{json.dumps(problem.context)}"
191
+ if cache_key in self.solution_cache:
192
+ return self.solution_cache[cache_key]
193
+
194
+ # Check if atomic
195
+ if problem.type == SubproblemType.ATOMIC:
196
+ solution = await self._solve_atomic(problem)
197
+ else:
198
+ # Decompose
199
+ subproblems = await self._decompose_problem(problem, problem.context)
200
+ for sub in subproblems:
201
+ self.subproblems[sub.id] = sub
202
+ problem.children.append(sub.id)
203
+
204
+ # Solve subproblems
205
+ if problem.type == SubproblemType.PARALLEL and len(subproblems) >= self.parallel_threshold:
206
+ # Solve in parallel
207
+ tasks = [self._solve_recursive(sub.id, depth + 1) for sub in subproblems]
208
+ subsolutions = await asyncio.gather(*tasks)
209
+ else:
210
+ # Solve sequentially
211
+ subsolutions = []
212
+ for sub in subproblems:
213
+ subsolution = await self._solve_recursive(sub.id, depth + 1)
214
+ subsolutions.append(subsolution)
215
+
216
+ # Synthesize solutions
217
+ solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
218
+
219
+ # Cache solution
220
+ self.solution_cache[cache_key] = solution
221
+ problem.solution = solution
222
+ problem.status = SolutionStatus.SOLVED if solution["success"] else SolutionStatus.FAILED
223
+
224
+ return solution
225
+
226
+ finally:
227
+ self.cycle_detection.remove(problem_id)
228
+
229
+ async def _solve_atomic(self, problem: Subproblem) -> Dict[str, Any]:
230
+ """Solve an atomic problem."""
231
+ prompt = f"""
232
+ Solve atomic problem:
233
+ Problem: {json.dumps(self._problem_to_dict(problem))}
234
+
235
+ Provide:
236
+ 1. Direct solution
237
+ 2. Confidence level
238
+ 3. Supporting evidence
239
+ 4. Alternative approaches
240
+
241
+ Format as:
242
+ [Solution]
243
+ Answer: ...
244
+ Confidence: ...
245
+ Evidence: ...
246
+ Alternatives: ...
247
+ """
248
+
249
+ response = await problem.context["groq_api"].predict(prompt)
250
+ solution = self._parse_atomic_solution(response["answer"])
251
+
252
+ self._record_step(RecursiveStep(
253
+ id=f"step_{len(self.steps)}",
254
+ subproblem_id=problem.id,
255
+ action="atomic_solve",
256
+ timestamp=datetime.now(),
257
+ result=solution,
258
+ metrics={"confidence": solution.get("confidence", 0.0)},
259
+ metadata={}
260
+ ))
261
+
262
+ return solution
263
+
264
+ async def _synthesize_solutions(self, subsolutions: List[Dict[str, Any]], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
265
+ """Synthesize solutions from subproblems."""
266
+ prompt = f"""
267
+ Synthesize solutions:
268
+ Problem: {json.dumps(self._problem_to_dict(problem))}
269
+ Solutions: {json.dumps(subsolutions)}
270
+ Context: {json.dumps(context)}
271
+
272
+ Provide:
273
+ 1. Integrated solution
274
+ 2. Confidence assessment
275
+ 3. Integration method
276
+ 4. Quality metrics
277
+
278
+ Format as:
279
+ [Synthesis]
280
+ Solution: ...
281
+ Confidence: ...
282
+ Method: ...
283
+ Metrics: ...
284
+ """
285
+
286
+ response = await context["groq_api"].predict(prompt)
287
+ synthesis = self._parse_synthesis(response["answer"])
288
+
289
+ self._record_step(RecursiveStep(
290
+ id=f"step_{len(self.steps)}",
291
+ subproblem_id=problem.id,
292
+ action="synthesize",
293
+ timestamp=datetime.now(),
294
+ result=synthesis,
295
+ metrics={"confidence": synthesis.get("confidence", 0.0)},
296
+ metadata={"num_subsolutions": len(subsolutions)}
297
+ ))
298
+
299
+ return synthesis
300
+
301
+ async def _optimize_solution(self, solution: Dict[str, Any], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
302
+ """Optimize the final solution."""
303
+ prompt = f"""
304
+ Optimize recursive solution:
305
+ Original: {json.dumps(solution)}
306
+ Problem: {json.dumps(self._problem_to_dict(problem))}
307
+ Context: {json.dumps(context)}
308
+
309
+ Optimize for:
310
+ 1. Completeness
311
+ 2. Consistency
312
+ 3. Efficiency
313
+ 4. Clarity
314
+
315
+ Format as:
316
+ [Optimization]
317
+ Answer: ...
318
+ Improvements: ...
319
+ Metrics: ...
320
+ Insights: ...
321
+ """
322
+
323
+ response = await context["groq_api"].predict(prompt)
324
+ return self._parse_optimization(response["answer"])
325
+
326
+ def _update_metrics(self, root_id: str):
327
+ """Update performance metrics."""
328
+ def update_recursive(problem_id: str):
329
+ problem = self.subproblems[problem_id]
330
+ self.type_distribution[problem.type] += 1
331
+
332
+ if problem.status == SolutionStatus.SOLVED:
333
+ self.success_rate[problem.type] = (
334
+ self.success_rate[problem.type] * (self.type_distribution[problem.type] - 1) +
335
+ problem.confidence
336
+ ) / self.type_distribution[problem.type]
337
+
338
+ for child_id in problem.children:
339
+ update_recursive(child_id)
340
+
341
+ update_recursive(root_id)
342
+
343
+ def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
344
+ """Get the problem decomposition tree."""
345
+ def build_tree(problem_id: str) -> Dict[str, Any]:
346
+ problem = self.subproblems[problem_id]
347
+ return {
348
+ "id": problem.id,
349
+ "type": problem.type.value,
350
+ "query": problem.query,
351
+ "status": problem.status.value,
352
+ "confidence": problem.confidence,
353
+ "children": [build_tree(child_id) for child_id in problem.children]
354
+ }
355
+
356
+ return build_tree(root_id)
357
+
358
+ def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
359
+ """Get the solution trace for a problem."""
360
+ return [self._step_to_dict(step) for step in self.steps
361
+ if step.subproblem_id == root_id or
362
+ any(step.subproblem_id == sub_id for sub_id in self.subproblems[root_id].children)]
363
+
364
+ def _get_performance_metrics(self) -> Dict[str, Any]:
365
+ """Get current performance metrics."""
366
+ return {
367
+ "depth_distribution": dict(self.depth_distribution),
368
+ "type_distribution": {t.value: c for t, c in self.type_distribution.items()},
369
+ "success_rate": {t.value: r for t, r in self.success_rate.items()},
370
+ "cache_hits": len(self.solution_cache),
371
+ "total_steps": len(self.steps)
372
+ }
373
+
374
+ def _record_step(self, step: RecursiveStep):
375
+ """Record a reasoning step."""
376
+ self.steps.append(step)
377
+
378
+ def _parse_problem_init(self, response: str, query: str, context: Dict[str, Any]) -> Subproblem:
379
+ """Parse initial problem configuration."""
380
+ problem_type = SubproblemType.COMPOSITE # default
381
+ dependencies = []
382
+ metadata = {}
383
+
384
+ for line in response.split('\n'):
385
+ line = line.strip()
386
+ if line.startswith('Type:'):
387
+ try:
388
+ problem_type = SubproblemType(line[5:].strip().lower())
389
+ except ValueError:
390
+ pass
391
+ elif line.startswith('Dependencies:'):
392
+ dependencies = [d.strip() for d in line[13:].split(',')]
393
+ elif line.startswith('Strategy:') or line.startswith('Approach:'):
394
+ metadata["strategy"] = line.split(':', 1)[1].strip()
395
+
396
+ return Subproblem(
397
+ id="root",
398
+ type=problem_type,
399
+ query=query,
400
+ context=context,
401
+ parent_id=None,
402
+ children=[],
403
+ status=SolutionStatus.PENDING,
404
+ solution=None,
405
+ confidence=0.0,
406
+ dependencies=dependencies,
407
+ metadata=metadata
408
+ )
409
+
410
+ def _parse_subproblems(self, response: str, parent_id: str, context: Dict[str, Any]) -> List[Subproblem]:
411
+ """Parse subproblems from response."""
412
+ subproblems = []
413
+ current = None
414
+
415
+ for line in response.split('\n'):
416
+ line = line.strip()
417
+ if not line:
418
+ continue
419
+
420
+ if line.startswith('[S'):
421
+ if current:
422
+ subproblems.append(current)
423
+ current = None
424
+ elif line.startswith('Type:'):
425
+ try:
426
+ problem_type = SubproblemType(line[5:].strip().lower())
427
+ current = Subproblem(
428
+ id=f"{parent_id}_{len(subproblems)}",
429
+ type=problem_type,
430
+ query="",
431
+ context=context,
432
+ parent_id=parent_id,
433
+ children=[],
434
+ status=SolutionStatus.PENDING,
435
+ solution=None,
436
+ confidence=0.0,
437
+ dependencies=[],
438
+ metadata={}
439
+ )
440
+ except ValueError:
441
+ current = None
442
+ elif current:
443
+ if line.startswith('Query:'):
444
+ current.query = line[6:].strip()
445
+ elif line.startswith('Dependencies:'):
446
+ current.dependencies = [d.strip() for d in line[13:].split(',')]
447
+ elif line.startswith('Approach:'):
448
+ current.metadata["approach"] = line[9:].strip()
449
+
450
+ if current:
451
+ subproblems.append(current)
452
+
453
+ return subproblems
454
+
455
+ def _parse_atomic_solution(self, response: str) -> Dict[str, Any]:
456
+ """Parse atomic solution from response."""
457
+ solution = {
458
+ "success": True,
459
+ "answer": "",
460
+ "confidence": 0.0,
461
+ "evidence": [],
462
+ "alternatives": []
463
+ }
464
+
465
+ for line in response.split('\n'):
466
+ line = line.strip()
467
+ if line.startswith('Answer:'):
468
+ solution["answer"] = line[7:].strip()
469
+ elif line.startswith('Confidence:'):
470
+ try:
471
+ solution["confidence"] = float(line[11:].strip())
472
+ except:
473
+ pass
474
+ elif line.startswith('Evidence:'):
475
+ solution["evidence"] = [e.strip() for e in line[9:].split(',')]
476
+ elif line.startswith('Alternatives:'):
477
+ solution["alternatives"] = [a.strip() for a in line[13:].split(',')]
478
+
479
+ return solution
480
+
481
+ def _parse_synthesis(self, response: str) -> Dict[str, Any]:
482
+ """Parse synthesis result from response."""
483
+ synthesis = {
484
+ "success": True,
485
+ "solution": "",
486
+ "confidence": 0.0,
487
+ "method": "",
488
+ "metrics": {}
489
+ }
490
+
491
+ for line in response.split('\n'):
492
+ line = line.strip()
493
+ if line.startswith('Solution:'):
494
+ synthesis["solution"] = line[9:].strip()
495
+ elif line.startswith('Confidence:'):
496
+ try:
497
+ synthesis["confidence"] = float(line[11:].strip())
498
+ except:
499
+ pass
500
+ elif line.startswith('Method:'):
501
+ synthesis["method"] = line[7:].strip()
502
+ elif line.startswith('Metrics:'):
503
+ try:
504
+ synthesis["metrics"] = json.loads(line[8:].strip())
505
+ except:
506
+ pass
507
+
508
+ return synthesis
509
+
510
+ def _parse_optimization(self, response: str) -> Dict[str, Any]:
511
+ """Parse optimization result from response."""
512
+ optimization = {
513
+ "answer": "",
514
+ "confidence": 0.0,
515
+ "improvements": [],
516
+ "metrics": {},
517
+ "meta_insights": []
518
+ }
519
+
520
+ for line in response.split('\n'):
521
+ line = line.strip()
522
+ if line.startswith('Answer:'):
523
+ optimization["answer"] = line[7:].strip()
524
+ elif line.startswith('Improvements:'):
525
+ optimization["improvements"] = [i.strip() for i in line[13:].split(',')]
526
+ elif line.startswith('Metrics:'):
527
+ try:
528
+ optimization["metrics"] = json.loads(line[8:].strip())
529
+ except:
530
+ pass
531
+ elif line.startswith('Insights:'):
532
+ optimization["meta_insights"] = [i.strip() for i in line[9:].split(',')]
533
+
534
+ return optimization
535
+
536
+ def _problem_to_dict(self, problem: Subproblem) -> Dict[str, Any]:
537
+ """Convert problem to dictionary for serialization."""
538
+ return {
539
+ "id": problem.id,
540
+ "type": problem.type.value,
541
+ "query": problem.query,
542
+ "parent_id": problem.parent_id,
543
+ "children": problem.children,
544
+ "status": problem.status.value,
545
+ "confidence": problem.confidence,
546
+ "dependencies": problem.dependencies,
547
+ "metadata": problem.metadata
548
+ }
549
+
550
+ def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
551
+ """Convert step to dictionary for serialization."""
552
+ return {
553
+ "id": step.id,
554
+ "subproblem_id": step.subproblem_id,
555
+ "action": step.action,
556
+ "timestamp": step.timestamp.isoformat(),
557
+ "result": step.result,
558
+ "metrics": step.metrics,
559
+ "metadata": step.metadata
560
+ }
561
+
562
+ def clear_cache(self):
563
+ """Clear solution cache."""
564
+ self.solution_cache.clear()
565
+
566
+ def get_statistics(self) -> Dict[str, Any]:
567
+ """Get detailed statistics about the reasoning process."""
568
+ return {
569
+ "total_problems": len(self.subproblems),
570
+ "total_steps": len(self.steps),
571
+ "cache_size": len(self.solution_cache),
572
+ "type_distribution": dict(self.type_distribution),
573
+ "depth_distribution": dict(self.depth_distribution),
574
+ "success_rates": dict(self.success_rate),
575
+ "average_confidence": sum(p.confidence for p in self.subproblems.values()) / len(self.subproblems) if self.subproblems else 0.0
576
+ }
reasoning/specialized.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized reasoning strategies for specific domains and tasks."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class SpecializedReasoning(ReasoningStrategy):
15
+ """
16
+ A composite reasoning strategy that combines multiple specialized strategies
17
+ for different domains and tasks.
18
+ """
19
+
20
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
21
+ """Initialize specialized reasoning with component strategies."""
22
+ super().__init__()
23
+ self.config = config or {}
24
+
25
+ # Standard reasoning parameters
26
+ self.min_confidence = self.config.get('min_confidence', 0.7)
27
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
28
+ self.learning_rate = self.config.get('learning_rate', 0.1)
29
+ self.strategy_weights = self.config.get('strategy_weights', {
30
+ "LOCAL_LLM": 0.8,
31
+ "CHAIN_OF_THOUGHT": 0.6,
32
+ "TREE_OF_THOUGHTS": 0.5,
33
+ "META_LEARNING": 0.4
34
+ })
35
+
36
+ # Initialize component strategies with shared config
37
+ strategy_config = {
38
+ 'min_confidence': self.min_confidence,
39
+ 'parallel_threshold': self.parallel_threshold,
40
+ 'learning_rate': self.learning_rate,
41
+ 'strategy_weights': self.strategy_weights
42
+ }
43
+
44
+ self.strategies = {
45
+ 'code_rewrite': CodeRewriteStrategy(strategy_config),
46
+ 'security_audit': SecurityAuditStrategy(strategy_config),
47
+ 'performance': PerformanceOptimizationStrategy(strategy_config),
48
+ 'testing': TestGenerationStrategy(strategy_config),
49
+ 'documentation': DocumentationStrategy(strategy_config),
50
+ 'api_design': APIDesignStrategy(strategy_config),
51
+ 'dependencies': DependencyManagementStrategy(strategy_config),
52
+ 'code_review': CodeReviewStrategy(strategy_config)
53
+ }
54
+
55
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
56
+ """
57
+ Apply specialized reasoning by selecting and combining appropriate
58
+ strategies based on the query and context.
59
+
60
+ Args:
61
+ query: The input query to reason about
62
+ context: Additional context and parameters
63
+
64
+ Returns:
65
+ Dict containing reasoning results and confidence scores
66
+ """
67
+ try:
68
+ # Determine which strategies to use based on context
69
+ selected_strategies = await self._select_strategies(query, context)
70
+
71
+ # Get results from each selected strategy
72
+ results = {}
73
+ for strategy_name in selected_strategies:
74
+ strategy = self.strategies[strategy_name]
75
+ results[strategy_name] = await strategy.reason(query, context)
76
+
77
+ # Combine results
78
+ combined_result = await self._combine_results(results, context)
79
+
80
+ return {
81
+ 'answer': combined_result.get('answer', ''),
82
+ 'confidence': combined_result.get('confidence', 0.0),
83
+ 'reasoning_path': {
84
+ 'selected_strategies': selected_strategies,
85
+ 'individual_results': results,
86
+ 'combination_method': combined_result.get('method', '')
87
+ }
88
+ }
89
+
90
+ except Exception as e:
91
+ logging.error(f"Specialized reasoning failed: {str(e)}")
92
+ return {
93
+ 'error': f"Specialized reasoning failed: {str(e)}",
94
+ 'confidence': 0.0
95
+ }
96
+
97
+ async def _select_strategies(self, query: str, context: Dict[str, Any]) -> List[str]:
98
+ """Select appropriate strategies based on query and context."""
99
+ selected = []
100
+
101
+ # Simple keyword-based selection for now
102
+ keywords = {
103
+ 'code_rewrite': ['rewrite', 'refactor', 'improve'],
104
+ 'security_audit': ['security', 'vulnerability', 'audit'],
105
+ 'performance': ['performance', 'optimize', 'speed'],
106
+ 'testing': ['test', 'coverage', 'verify'],
107
+ 'documentation': ['document', 'explain', 'describe'],
108
+ 'api_design': ['api', 'interface', 'endpoint'],
109
+ 'dependencies': ['dependency', 'package', 'version'],
110
+ 'code_review': ['review', 'quality', 'check']
111
+ }
112
+
113
+ query_lower = query.lower()
114
+ for strategy, terms in keywords.items():
115
+ if any(term in query_lower for term in terms):
116
+ selected.append(strategy)
117
+
118
+ # If no specific strategies selected, use code review as default
119
+ if not selected:
120
+ selected = ['code_review']
121
+
122
+ return selected
123
+
124
+ async def _combine_results(
125
+ self,
126
+ results: Dict[str, Dict[str, Any]],
127
+ context: Dict[str, Any]
128
+ ) -> Dict[str, Any]:
129
+ """Combine results from multiple strategies."""
130
+ if not results:
131
+ return {'answer': '', 'confidence': 0.0, 'method': 'none'}
132
+
133
+ # For now, use the highest confidence result
134
+ best_result = max(
135
+ results.items(),
136
+ key=lambda x: x[1].get('confidence', 0)
137
+ )
138
+
139
+ return {
140
+ 'answer': best_result[1].get('answer', ''),
141
+ 'confidence': best_result[1].get('confidence', 0.0),
142
+ 'method': 'highest_confidence'
143
+ }
144
+
145
+ class CodeRewriteStrategy(ReasoningStrategy):
146
+ """
147
+ Advanced code rewriting strategy that:
148
+ 1. Analyzes code structure and patterns
149
+ 2. Identifies refactoring opportunities
150
+ 3. Maintains code semantics
151
+ 4. Optimizes code quality
152
+ 5. Ensures backward compatibility
153
+ """
154
+
155
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
156
+ super().__init__()
157
+ self.config = config or {}
158
+
159
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
160
+ """Rewrite code while preserving functionality."""
161
+ try:
162
+ # Analyze code
163
+ analysis = await self._analyze_code(query, context)
164
+
165
+ # Generate rewrite plan
166
+ plan = await self._generate_rewrite_plan(analysis, context)
167
+
168
+ # Execute rewrites
169
+ rewrites = await self._execute_rewrites(plan, context)
170
+
171
+ # Validate changes
172
+ validation = await self._validate_changes(rewrites, context)
173
+
174
+ return {
175
+ "success": validation["success"],
176
+ "rewrites": rewrites,
177
+ "validation": validation,
178
+ "metrics": {
179
+ "quality_improvement": validation.get("quality_score", 0.0),
180
+ "semantic_preservation": validation.get("semantic_score", 0.0)
181
+ }
182
+ }
183
+ except Exception as e:
184
+ logging.error(f"Error in code rewrite: {str(e)}")
185
+ return {"success": False, "error": str(e)}
186
+
187
+ class SecurityAuditStrategy(ReasoningStrategy):
188
+ """
189
+ Advanced security audit strategy that:
190
+ 1. Identifies security vulnerabilities
191
+ 2. Analyzes attack vectors
192
+ 3. Recommends security fixes
193
+ 4. Validates security measures
194
+ 5. Monitors security state
195
+ """
196
+
197
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
198
+ super().__init__()
199
+ self.config = config or {}
200
+
201
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
202
+ """Perform security audit and generate recommendations."""
203
+ try:
204
+ # Scan for vulnerabilities
205
+ vulnerabilities = await self._scan_vulnerabilities(query, context)
206
+
207
+ # Analyze risks
208
+ risks = await self._analyze_risks(vulnerabilities, context)
209
+
210
+ # Generate fixes
211
+ fixes = await self._generate_fixes(risks, context)
212
+
213
+ # Validate security
214
+ validation = await self._validate_security(fixes, context)
215
+
216
+ return {
217
+ "success": True,
218
+ "vulnerabilities": vulnerabilities,
219
+ "risks": risks,
220
+ "fixes": fixes,
221
+ "validation": validation
222
+ }
223
+ except Exception as e:
224
+ logging.error(f"Error in security audit: {str(e)}")
225
+ return {"success": False, "error": str(e)}
226
+
227
+ class PerformanceOptimizationStrategy(ReasoningStrategy):
228
+ """
229
+ Advanced performance optimization strategy that:
230
+ 1. Profiles code performance
231
+ 2. Identifies bottlenecks
232
+ 3. Generates optimizations
233
+ 4. Measures improvements
234
+ 5. Validates optimizations
235
+ """
236
+
237
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
238
+ super().__init__()
239
+ self.config = config or {}
240
+
241
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
242
+ """Optimize code performance."""
243
+ try:
244
+ # Profile performance
245
+ profile = await self._profile_performance(query, context)
246
+
247
+ # Identify bottlenecks
248
+ bottlenecks = await self._identify_bottlenecks(profile, context)
249
+
250
+ # Generate optimizations
251
+ optimizations = await self._generate_optimizations(bottlenecks, context)
252
+
253
+ # Measure improvements
254
+ measurements = await self._measure_improvements(optimizations, context)
255
+
256
+ return {
257
+ "success": measurements["success"],
258
+ "profile": profile,
259
+ "bottlenecks": bottlenecks,
260
+ "optimizations": optimizations,
261
+ "improvements": measurements
262
+ }
263
+ except Exception as e:
264
+ logging.error(f"Error in performance optimization: {str(e)}")
265
+ return {"success": False, "error": str(e)}
266
+
267
+ class TestGenerationStrategy(ReasoningStrategy):
268
+ """
269
+ Advanced test generation strategy that:
270
+ 1. Analyzes code coverage
271
+ 2. Generates test cases
272
+ 3. Creates test fixtures
273
+ 4. Validates test quality
274
+ 5. Maintains test suite
275
+ """
276
+
277
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
278
+ super().__init__()
279
+ self.config = config or {}
280
+
281
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
282
+ """Generate comprehensive test suite."""
283
+ try:
284
+ # Analyze coverage
285
+ coverage = await self._analyze_coverage(query, context)
286
+
287
+ # Generate test cases
288
+ test_cases = await self._generate_test_cases(coverage, context)
289
+
290
+ # Create fixtures
291
+ fixtures = await self._create_fixtures(test_cases, context)
292
+
293
+ # Validate tests
294
+ validation = await self._validate_tests(test_cases, fixtures, context)
295
+
296
+ return {
297
+ "success": validation["success"],
298
+ "test_cases": test_cases,
299
+ "fixtures": fixtures,
300
+ "validation": validation,
301
+ "metrics": {
302
+ "coverage": coverage.get("percentage", 0.0),
303
+ "quality_score": validation.get("quality_score", 0.0)
304
+ }
305
+ }
306
+ except Exception as e:
307
+ logging.error(f"Error in test generation: {str(e)}")
308
+ return {"success": False, "error": str(e)}
309
+
310
+ class DocumentationStrategy(ReasoningStrategy):
311
+ """
312
+ Advanced documentation strategy that:
313
+ 1. Analyzes code structure
314
+ 2. Generates documentation
315
+ 3. Maintains consistency
316
+ 4. Updates references
317
+ 5. Validates completeness
318
+ """
319
+
320
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
321
+ super().__init__()
322
+ self.config = config or {}
323
+
324
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
325
+ """Generate and maintain documentation."""
326
+ try:
327
+ # Analyze structure
328
+ structure = await self._analyze_structure(query, context)
329
+
330
+ # Generate documentation
331
+ documentation = await self._generate_documentation(structure, context)
332
+
333
+ # Update references
334
+ references = await self._update_references(documentation, context)
335
+
336
+ # Validate completeness
337
+ validation = await self._validate_documentation(documentation, references, context)
338
+
339
+ return {
340
+ "success": validation["success"],
341
+ "documentation": documentation,
342
+ "references": references,
343
+ "validation": validation,
344
+ "metrics": {
345
+ "completeness": validation.get("completeness_score", 0.0),
346
+ "consistency": validation.get("consistency_score", 0.0)
347
+ }
348
+ }
349
+ except Exception as e:
350
+ logging.error(f"Error in documentation: {str(e)}")
351
+ return {"success": False, "error": str(e)}
352
+
353
+ class APIDesignStrategy(ReasoningStrategy):
354
+ """
355
+ Advanced API design strategy that:
356
+ 1. Analyzes requirements
357
+ 2. Designs API structure
358
+ 3. Generates specifications
359
+ 4. Validates design
360
+ 5. Maintains versioning
361
+ """
362
+
363
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
364
+ super().__init__()
365
+ self.config = config or {}
366
+
367
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
368
+ """Design and validate API."""
369
+ try:
370
+ # Analyze requirements
371
+ requirements = await self._analyze_requirements(query, context)
372
+
373
+ # Design structure
374
+ design = await self._design_structure(requirements, context)
375
+
376
+ # Generate specs
377
+ specs = await self._generate_specs(design, context)
378
+
379
+ # Validate design
380
+ validation = await self._validate_design(specs, context)
381
+
382
+ return {
383
+ "success": validation["success"],
384
+ "requirements": requirements,
385
+ "design": design,
386
+ "specs": specs,
387
+ "validation": validation
388
+ }
389
+ except Exception as e:
390
+ logging.error(f"Error in API design: {str(e)}")
391
+ return {"success": False, "error": str(e)}
392
+
393
+ class DependencyManagementStrategy(ReasoningStrategy):
394
+ """
395
+ Advanced dependency management strategy that:
396
+ 1. Analyzes dependencies
397
+ 2. Resolves conflicts
398
+ 3. Optimizes versions
399
+ 4. Ensures compatibility
400
+ 5. Maintains security
401
+ """
402
+
403
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
404
+ super().__init__()
405
+ self.config = config or {}
406
+
407
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
408
+ """Manage and optimize dependencies."""
409
+ try:
410
+ # Analyze dependencies
411
+ analysis = await self._analyze_dependencies(query, context)
412
+
413
+ # Resolve conflicts
414
+ resolution = await self._resolve_conflicts(analysis, context)
415
+
416
+ # Optimize versions
417
+ optimization = await self._optimize_versions(resolution, context)
418
+
419
+ # Validate compatibility
420
+ validation = await self._validate_compatibility(optimization, context)
421
+
422
+ return {
423
+ "success": validation["success"],
424
+ "analysis": analysis,
425
+ "resolution": resolution,
426
+ "optimization": optimization,
427
+ "validation": validation
428
+ }
429
+ except Exception as e:
430
+ logging.error(f"Error in dependency management: {str(e)}")
431
+ return {"success": False, "error": str(e)}
432
+
433
+ class CodeReviewStrategy(ReasoningStrategy):
434
+ """
435
+ Advanced code review strategy that:
436
+ 1. Analyzes code quality
437
+ 2. Identifies issues
438
+ 3. Suggests improvements
439
+ 4. Tracks changes
440
+ 5. Validates fixes
441
+ """
442
+
443
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
444
+ super().__init__()
445
+ self.config = config or {}
446
+
447
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
448
+ """Perform comprehensive code review."""
449
+ try:
450
+ # Analyze quality
451
+ quality = await self._analyze_quality(query, context)
452
+
453
+ # Identify issues
454
+ issues = await self._identify_issues(quality, context)
455
+
456
+ # Generate suggestions
457
+ suggestions = await self._generate_suggestions(issues, context)
458
+
459
+ # Track changes
460
+ tracking = await self._track_changes(suggestions, context)
461
+
462
+ return {
463
+ "success": True,
464
+ "quality": quality,
465
+ "issues": issues,
466
+ "suggestions": suggestions,
467
+ "tracking": tracking,
468
+ "metrics": {
469
+ "quality_score": quality.get("score", 0.0),
470
+ "issues_found": len(issues),
471
+ "suggestions_made": len(suggestions)
472
+ }
473
+ }
474
+ except Exception as e:
475
+ logging.error(f"Error in code review: {str(e)}")
476
+ return {"success": False, "error": str(e)}
reasoning/tree_of_thoughts.py ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tree of Thoughts reasoning implementation with advanced tree exploration."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Tuple
5
+ import json
6
+ from dataclasses import dataclass
7
+ from enum import Enum
8
+ import heapq
9
+ from collections import defaultdict
10
+
11
+ from .base import ReasoningStrategy
12
+
13
+ class NodeType(Enum):
14
+ """Types of nodes in the thought tree."""
15
+ ROOT = "root"
16
+ HYPOTHESIS = "hypothesis"
17
+ EVIDENCE = "evidence"
18
+ ANALYSIS = "analysis"
19
+ SYNTHESIS = "synthesis"
20
+ EVALUATION = "evaluation"
21
+ CONCLUSION = "conclusion"
22
+
23
+ @dataclass
24
+ class TreeNode:
25
+ """Represents a node in the thought tree."""
26
+ id: str
27
+ type: NodeType
28
+ content: str
29
+ confidence: float
30
+ children: List['TreeNode']
31
+ parent: Optional['TreeNode']
32
+ metadata: Dict[str, Any]
33
+ depth: int
34
+ evaluation_score: float = 0.0
35
+
36
+ class TreeOfThoughtsStrategy(ReasoningStrategy):
37
+ """
38
+ Advanced Tree of Thoughts reasoning implementation with:
39
+ - Beam search for path exploration
40
+ - Dynamic node evaluation
41
+ - Pruning strategies
42
+ - Path optimization
43
+ - Meta-learning from tree patterns
44
+ """
45
+
46
+ def __init__(self,
47
+ min_confidence: float = 0.7,
48
+ parallel_threshold: int = 3,
49
+ learning_rate: float = 0.1,
50
+ strategy_weights: Optional[Dict[str, float]] = None):
51
+ self.min_confidence = min_confidence
52
+ self.parallel_threshold = parallel_threshold
53
+ self.learning_rate = learning_rate
54
+ self.strategy_weights = strategy_weights or {
55
+ "LOCAL_LLM": 0.8,
56
+ "CHAIN_OF_THOUGHT": 0.6,
57
+ "TREE_OF_THOUGHTS": 0.5,
58
+ "META_LEARNING": 0.4
59
+ }
60
+ self.node_history: Dict[str, TreeNode] = {}
61
+ self.path_patterns: Dict[str, float] = defaultdict(float)
62
+
63
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
64
+ """Main reasoning method implementing tree of thoughts."""
65
+ try:
66
+ # Initialize root node
67
+ root = await self._create_root_node(query, context)
68
+
69
+ # Build and explore tree
70
+ tree = await self._build_tree(root, context)
71
+
72
+ # Find best paths
73
+ paths = await self._find_best_paths(tree, context)
74
+
75
+ # Synthesize conclusion
76
+ conclusion = await self._synthesize_conclusion(paths, context)
77
+
78
+ # Update history and patterns
79
+ self._update_history(tree)
80
+ self._update_patterns(paths)
81
+
82
+ return {
83
+ "success": True,
84
+ "answer": conclusion["answer"],
85
+ "confidence": conclusion["confidence"],
86
+ "tree": self._tree_to_dict(tree),
87
+ "best_paths": [self._path_to_dict(p) for p in paths],
88
+ "reasoning_trace": conclusion["trace"],
89
+ "meta_insights": conclusion["meta_insights"]
90
+ }
91
+ except Exception as e:
92
+ logging.error(f"Error in tree of thoughts reasoning: {str(e)}")
93
+ return {"success": False, "error": str(e)}
94
+
95
+ async def _create_root_node(self, query: str, context: Dict[str, Any]) -> TreeNode:
96
+ """Create the root node of the thought tree."""
97
+ prompt = f"""
98
+ Initialize root thought node for query:
99
+ Query: {query}
100
+ Context: {json.dumps(context)}
101
+
102
+ Provide:
103
+ 1. Initial problem decomposition
104
+ 2. Key aspects to explore
105
+ 3. Evaluation criteria
106
+ 4. Success metrics
107
+
108
+ Format as:
109
+ [Root]
110
+ Decomposition: ...
111
+ Aspects: ...
112
+ Criteria: ...
113
+ Metrics: ...
114
+ """
115
+
116
+ response = await context["groq_api"].predict(prompt)
117
+ return self._parse_root_node(response["answer"], query)
118
+
119
+ async def _build_tree(self, root: TreeNode, context: Dict[str, Any]) -> TreeNode:
120
+ """Build and explore the thought tree."""
121
+ # Initialize beam with root
122
+ beam = [(root.evaluation_score, root)]
123
+ visited: Set[str] = set()
124
+
125
+ for depth in range(5):
126
+ next_beam = []
127
+
128
+ for _, node in beam:
129
+ if node.id in visited:
130
+ continue
131
+
132
+ visited.add(node.id)
133
+
134
+ # Generate child nodes
135
+ children = await self._generate_children(node, context)
136
+
137
+ # Evaluate and filter children
138
+ evaluated_children = await self._evaluate_nodes(children, context)
139
+
140
+ # Add to beam
141
+ for child in evaluated_children:
142
+ if child.evaluation_score > 0.4:
143
+ next_beam.append((child.evaluation_score, child))
144
+ node.children.append(child)
145
+
146
+ # Select best nodes for next iteration
147
+ beam = heapq.nlargest(3, next_beam, key=lambda x: x[0])
148
+
149
+ if not beam:
150
+ break
151
+
152
+ return root
153
+
154
+ async def _generate_children(self, parent: TreeNode, context: Dict[str, Any]) -> List[TreeNode]:
155
+ """Generate child nodes for a given parent."""
156
+ prompt = f"""
157
+ Generate child thoughts for node:
158
+ Parent: {json.dumps(self._node_to_dict(parent))}
159
+ Context: {json.dumps(context)}
160
+
161
+ For each child provide:
162
+ 1. [Type]: {" | ".join([t.value for t in NodeType if t != NodeType.ROOT])}
163
+ 2. [Content]: Main thought
164
+ 3. [Confidence]: 0-1 score
165
+ 4. [Rationale]: Why this follows from parent
166
+ 5. [Potential]: Future exploration potential
167
+
168
+ Format as:
169
+ [C1]
170
+ Type: ...
171
+ Content: ...
172
+ Confidence: ...
173
+ Rationale: ...
174
+ Potential: ...
175
+ """
176
+
177
+ response = await context["groq_api"].predict(prompt)
178
+ return self._parse_child_nodes(response["answer"], parent)
179
+
180
+ async def _evaluate_nodes(self, nodes: List[TreeNode], context: Dict[str, Any]) -> List[TreeNode]:
181
+ """Evaluate a list of nodes."""
182
+ prompt = f"""
183
+ Evaluate thought nodes:
184
+ Nodes: {json.dumps([self._node_to_dict(n) for n in nodes])}
185
+ Context: {json.dumps(context)}
186
+
187
+ For each node evaluate:
188
+ 1. Logical coherence
189
+ 2. Evidence support
190
+ 3. Novelty value
191
+ 4. Exploration potential
192
+
193
+ Format as:
194
+ [N1]
195
+ Coherence: 0-1
196
+ Evidence: 0-1
197
+ Novelty: 0-1
198
+ Potential: 0-1
199
+ Overall: 0-1
200
+ """
201
+
202
+ response = await context["groq_api"].predict(prompt)
203
+ return self._apply_evaluations(nodes, response["answer"])
204
+
205
+ async def _find_best_paths(self, root: TreeNode, context: Dict[str, Any]) -> List[List[TreeNode]]:
206
+ """Find the best paths through the tree."""
207
+ paths = []
208
+ current_path = [root]
209
+
210
+ def dfs(node: TreeNode, path: List[TreeNode]):
211
+ if not node.children:
212
+ paths.append(path[:])
213
+ return
214
+
215
+ # Sort children by score
216
+ sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
217
+
218
+ # Explore top paths
219
+ for child in sorted_children[:3]:
220
+ path.append(child)
221
+ dfs(child, path)
222
+ path.pop()
223
+
224
+ dfs(root, current_path)
225
+
226
+ # Evaluate complete paths
227
+ evaluated_paths = await self._evaluate_paths(paths, context)
228
+
229
+ # Return top paths
230
+ return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:3]
231
+
232
+ async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
233
+ """Synthesize final conclusion from best paths."""
234
+ prompt = f"""
235
+ Synthesize conclusion from thought paths:
236
+ Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
237
+ Context: {json.dumps(context)}
238
+
239
+ Provide:
240
+ 1. Main conclusion
241
+ 2. Confidence level
242
+ 3. Reasoning trace
243
+ 4. Supporting evidence
244
+ 5. Alternative perspectives
245
+ 6. Meta-insights
246
+
247
+ Format as:
248
+ [Conclusion]
249
+ Answer: ...
250
+ Confidence: ...
251
+ Trace: ...
252
+ Evidence: ...
253
+ Alternatives: ...
254
+
255
+ [Meta]
256
+ Insights: ...
257
+ Patterns: ...
258
+ """
259
+
260
+ response = await context["groq_api"].predict(prompt)
261
+ return self._parse_conclusion(response["answer"])
262
+
263
+ def _parse_root_node(self, response: str, query: str) -> TreeNode:
264
+ """Parse root node from response."""
265
+ root = TreeNode(
266
+ id="root",
267
+ type=NodeType.ROOT,
268
+ content=query,
269
+ confidence=1.0,
270
+ children=[],
271
+ parent=None,
272
+ metadata={},
273
+ depth=0
274
+ )
275
+
276
+ for line in response.split('\n'):
277
+ line = line.strip()
278
+ if line.startswith('Decomposition:'):
279
+ root.metadata["decomposition"] = line[14:].strip()
280
+ elif line.startswith('Aspects:'):
281
+ root.metadata["aspects"] = [a.strip() for a in line[8:].split(',')]
282
+ elif line.startswith('Criteria:'):
283
+ root.metadata["criteria"] = [c.strip() for c in line[9:].split(',')]
284
+ elif line.startswith('Metrics:'):
285
+ root.metadata["metrics"] = [m.strip() for m in line[8:].split(',')]
286
+
287
+ return root
288
+
289
+ def _parse_child_nodes(self, response: str, parent: TreeNode) -> List[TreeNode]:
290
+ """Parse child nodes from response."""
291
+ children = []
292
+ current = None
293
+
294
+ for line in response.split('\n'):
295
+ line = line.strip()
296
+ if not line:
297
+ continue
298
+
299
+ if line.startswith('[C'):
300
+ if current:
301
+ children.append(current)
302
+ current = None
303
+ elif line.startswith('Type:'):
304
+ type_str = line[5:].strip()
305
+ try:
306
+ node_type = NodeType(type_str.lower())
307
+ current = TreeNode(
308
+ id=f"{parent.id}_{len(children)}",
309
+ type=node_type,
310
+ content="",
311
+ confidence=0.0,
312
+ children=[],
313
+ parent=parent,
314
+ metadata={},
315
+ depth=parent.depth + 1
316
+ )
317
+ except ValueError:
318
+ logging.warning(f"Invalid node type: {type_str}")
319
+ elif current:
320
+ if line.startswith('Content:'):
321
+ current.content = line[8:].strip()
322
+ elif line.startswith('Confidence:'):
323
+ try:
324
+ current.confidence = float(line[11:].strip())
325
+ except:
326
+ current.confidence = 0.5
327
+ elif line.startswith('Rationale:'):
328
+ current.metadata["rationale"] = line[10:].strip()
329
+ elif line.startswith('Potential:'):
330
+ current.metadata["potential"] = line[10:].strip()
331
+
332
+ if current:
333
+ children.append(current)
334
+
335
+ return children
336
+
337
+ def _apply_evaluations(self, nodes: List[TreeNode], response: str) -> List[TreeNode]:
338
+ """Apply evaluation scores to nodes."""
339
+ current_node_idx = 0
340
+ current_scores = {}
341
+
342
+ for line in response.split('\n'):
343
+ line = line.strip()
344
+ if not line:
345
+ continue
346
+
347
+ if line.startswith('[N'):
348
+ if current_scores and current_node_idx < len(nodes):
349
+ nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
350
+ nodes[current_node_idx].metadata.update(current_scores)
351
+ current_node_idx += 1
352
+ current_scores = {}
353
+ elif ':' in line:
354
+ key, value = line.split(':')
355
+ try:
356
+ current_scores[key.strip()] = float(value.strip())
357
+ except:
358
+ pass
359
+
360
+ if current_scores and current_node_idx < len(nodes):
361
+ nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
362
+ nodes[current_node_idx].metadata.update(current_scores)
363
+
364
+ return nodes
365
+
366
+ async def _evaluate_paths(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> List[List[TreeNode]]:
367
+ """Evaluate complete reasoning paths."""
368
+ prompt = f"""
369
+ Evaluate complete reasoning paths:
370
+ Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
371
+ Context: {json.dumps(context)}
372
+
373
+ For each path evaluate:
374
+ 1. Coherence of progression
375
+ 2. Evidence support
376
+ 3. Conclusion strength
377
+ 4. Novel insights
378
+
379
+ Format as:
380
+ [P1]
381
+ Coherence: 0-1
382
+ Evidence: 0-1
383
+ Conclusion: 0-1
384
+ Insights: 0-1
385
+ Overall: 0-1
386
+ """
387
+
388
+ response = await context["groq_api"].predict(prompt)
389
+ scores = self._parse_path_scores(response["answer"])
390
+
391
+ # Apply scores to paths
392
+ for i, path in enumerate(paths):
393
+ if i < len(scores):
394
+ for node in path:
395
+ node.evaluation_score *= scores[i]
396
+
397
+ return paths
398
+
399
+ def _parse_path_scores(self, response: str) -> List[float]:
400
+ """Parse path evaluation scores."""
401
+ scores = []
402
+ current_score = None
403
+
404
+ for line in response.split('\n'):
405
+ line = line.strip()
406
+ if not line:
407
+ continue
408
+
409
+ if line.startswith('[P'):
410
+ if current_score is not None:
411
+ scores.append(current_score)
412
+ current_score = None
413
+ elif line.startswith('Overall:'):
414
+ try:
415
+ current_score = float(line[8:].strip())
416
+ except:
417
+ current_score = 0.5
418
+
419
+ if current_score is not None:
420
+ scores.append(current_score)
421
+
422
+ return scores
423
+
424
+ def _parse_conclusion(self, response: str) -> Dict[str, Any]:
425
+ """Parse final conclusion."""
426
+ conclusion = {
427
+ "answer": "",
428
+ "confidence": 0.0,
429
+ "trace": [],
430
+ "evidence": [],
431
+ "alternatives": [],
432
+ "meta_insights": []
433
+ }
434
+
435
+ section = None
436
+ for line in response.split('\n'):
437
+ line = line.strip()
438
+ if not line:
439
+ continue
440
+
441
+ if line.startswith('[Conclusion]'):
442
+ section = "conclusion"
443
+ elif line.startswith('[Meta]'):
444
+ section = "meta"
445
+ elif section == "conclusion":
446
+ if line.startswith('Answer:'):
447
+ conclusion["answer"] = line[7:].strip()
448
+ elif line.startswith('Confidence:'):
449
+ try:
450
+ conclusion["confidence"] = float(line[11:].strip())
451
+ except:
452
+ conclusion["confidence"] = 0.5
453
+ elif line.startswith('Trace:'):
454
+ conclusion["trace"] = [t.strip() for t in line[6:].split(',')]
455
+ elif line.startswith('Evidence:'):
456
+ conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
457
+ elif line.startswith('Alternatives:'):
458
+ conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
459
+ elif section == "meta":
460
+ if line.startswith('Insights:'):
461
+ conclusion["meta_insights"].extend([i.strip() for i in line[9:].split(',')])
462
+
463
+ return conclusion
464
+
465
+ def _node_to_dict(self, node: TreeNode) -> Dict[str, Any]:
466
+ """Convert node to dictionary for serialization."""
467
+ return {
468
+ "id": node.id,
469
+ "type": node.type.value,
470
+ "content": node.content,
471
+ "confidence": node.confidence,
472
+ "evaluation_score": node.evaluation_score,
473
+ "metadata": node.metadata,
474
+ "depth": node.depth
475
+ }
476
+
477
+ def _tree_to_dict(self, root: TreeNode) -> Dict[str, Any]:
478
+ """Convert entire tree to dictionary."""
479
+ def convert_node(node: TreeNode) -> Dict[str, Any]:
480
+ node_dict = self._node_to_dict(node)
481
+ node_dict["children"] = [convert_node(c) for c in node.children]
482
+ return node_dict
483
+
484
+ return convert_node(root)
485
+
486
+ def _path_to_dict(self, path: List[TreeNode]) -> List[Dict[str, Any]]:
487
+ """Convert path to dictionary."""
488
+ return [self._node_to_dict(n) for n in path]
489
+
490
+ def _update_history(self, root: TreeNode):
491
+ """Update node history."""
492
+ def add_to_history(node: TreeNode):
493
+ self.node_history[node.id] = node
494
+ for child in node.children:
495
+ add_to_history(child)
496
+
497
+ add_to_history(root)
498
+
499
+ def _update_patterns(self, paths: List[List[TreeNode]]):
500
+ """Update path patterns."""
501
+ for path in paths:
502
+ pattern = "->".join(n.type.value for n in path)
503
+ self.path_patterns[pattern] += path[-1].evaluation_score
504
+
505
+ def get_node_history(self) -> Dict[str, Dict[str, Any]]:
506
+ """Get history of all nodes."""
507
+ return {k: self._node_to_dict(v) for k, v in self.node_history.items()}
508
+
509
+ def get_successful_patterns(self) -> Dict[str, float]:
510
+ """Get successful reasoning patterns."""
511
+ return dict(sorted(self.path_patterns.items(), key=lambda x: x[1], reverse=True))
512
+
513
+ def clear_history(self):
514
+ """Clear node history and patterns."""
515
+ self.node_history.clear()
516
+ self.path_patterns.clear()
reasoning/unified_engine.py ADDED
@@ -0,0 +1,707 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Unified reasoning engine that combines multiple reasoning strategies."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import asyncio
10
+ from collections import defaultdict
11
+ import numpy as np
12
+
13
+ from .base import ReasoningStrategy
14
+ from .groq_strategy import GroqStrategy
15
+ from .chain_of_thought import ChainOfThoughtStrategy
16
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
17
+ from .meta_learning import MetaLearningStrategy
18
+ from .recursive import RecursiveReasoning
19
+ from .analogical import AnalogicalReasoning
20
+ from .local_llm import LocalLLMStrategy
21
+ from .agentic import (
22
+ TaskDecompositionStrategy,
23
+ ResourceManagementStrategy,
24
+ ContextualPlanningStrategy,
25
+ AdaptiveExecutionStrategy,
26
+ FeedbackIntegrationStrategy
27
+ )
28
+ # Import additional strategies
29
+ from .bayesian import BayesianStrategy
30
+ from .market_analysis import MarketAnalysisStrategy
31
+ from .monetization import MonetizationStrategy
32
+ from .multimodal import MultimodalStrategy
33
+ from .neurosymbolic import NeurosymbolicStrategy
34
+ from .portfolio_optimization import PortfolioOptimizationStrategy
35
+ from .specialized import SpecializedStrategy
36
+ from .venture_strategies import VentureStrategy
37
+ from .venture_types import VentureTypeStrategy
38
+
39
+ class StrategyType(str, Enum):
40
+ """Types of reasoning strategies."""
41
+ GROQ = "groq"
42
+ CHAIN_OF_THOUGHT = "chain_of_thought"
43
+ TREE_OF_THOUGHTS = "tree_of_thoughts"
44
+ META_LEARNING = "meta_learning"
45
+ RECURSIVE = "recursive"
46
+ ANALOGICAL = "analogical"
47
+ LOCAL_LLM = "local_llm"
48
+ TASK_DECOMPOSITION = "task_decomposition"
49
+ RESOURCE_MANAGEMENT = "resource_management"
50
+ CONTEXTUAL_PLANNING = "contextual_planning"
51
+ ADAPTIVE_EXECUTION = "adaptive_execution"
52
+ FEEDBACK_INTEGRATION = "feedback_integration"
53
+ BAYESIAN = "bayesian"
54
+ MARKET_ANALYSIS = "market_analysis"
55
+ MONETIZATION = "monetization"
56
+ MULTIMODAL = "multimodal"
57
+ NEUROSYMBOLIC = "neurosymbolic"
58
+ PORTFOLIO_OPTIMIZATION = "portfolio_optimization"
59
+ SPECIALIZED = "specialized"
60
+ VENTURE = "venture"
61
+ VENTURE_TYPE = "venture_type"
62
+
63
+ @dataclass
64
+ class StrategyResult:
65
+ """Result from a reasoning strategy."""
66
+ strategy_type: StrategyType
67
+ success: bool
68
+ answer: Optional[str]
69
+ confidence: float
70
+ reasoning_trace: List[Dict[str, Any]]
71
+ metadata: Dict[str, Any]
72
+ performance_metrics: Dict[str, Any]
73
+ timestamp: datetime = field(default_factory=datetime.now)
74
+
75
+ @dataclass
76
+ class UnifiedResult:
77
+ """Combined result from multiple strategies."""
78
+ success: bool
79
+ answer: str
80
+ confidence: float
81
+ strategy_results: Dict[StrategyType, StrategyResult]
82
+ synthesis_method: str
83
+ meta_insights: List[str]
84
+ performance_metrics: Dict[str, Any]
85
+ timestamp: datetime = field(default_factory=datetime.now)
86
+
87
+ class UnifiedReasoningEngine:
88
+ """
89
+ Advanced unified reasoning engine that:
90
+ 1. Combines multiple reasoning strategies
91
+ 2. Dynamically selects and weights strategies
92
+ 3. Synthesizes results from different approaches
93
+ 4. Learns from experience
94
+ 5. Adapts to different types of tasks
95
+ """
96
+
97
+ def __init__(self,
98
+ min_confidence: float = 0.7,
99
+ strategy_weights: Optional[Dict[StrategyType, float]] = None,
100
+ parallel_threshold: int = 3,
101
+ learning_rate: float = 0.1):
102
+ self.min_confidence = min_confidence
103
+ self.parallel_threshold = parallel_threshold
104
+ self.learning_rate = learning_rate
105
+
106
+ # Initialize strategies
107
+ self.strategies: Dict[StrategyType, ReasoningStrategy] = {
108
+ # Primary strategy (Groq)
109
+ StrategyType.GROQ: GroqStrategy(),
110
+
111
+ # Core strategies
112
+ StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(),
113
+ StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(),
114
+ StrategyType.META_LEARNING: MetaLearningStrategy(),
115
+ StrategyType.RECURSIVE: RecursiveReasoning(),
116
+ StrategyType.ANALOGICAL: AnalogicalReasoning(),
117
+ StrategyType.LOCAL_LLM: LocalLLMStrategy(),
118
+
119
+ # Agentic strategies
120
+ StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(),
121
+ StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(),
122
+ StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(),
123
+ StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(),
124
+ StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(),
125
+
126
+ # Additional specialized strategies
127
+ StrategyType.BAYESIAN: BayesianStrategy(),
128
+ StrategyType.MARKET_ANALYSIS: MarketAnalysisStrategy(),
129
+ StrategyType.MONETIZATION: MonetizationStrategy(),
130
+ StrategyType.MULTIMODAL: MultimodalStrategy(),
131
+ StrategyType.NEUROSYMBOLIC: NeurosymbolicStrategy(),
132
+ StrategyType.PORTFOLIO_OPTIMIZATION: PortfolioOptimizationStrategy(),
133
+ StrategyType.SPECIALIZED: SpecializedStrategy(),
134
+ StrategyType.VENTURE: VentureStrategy(),
135
+ StrategyType.VENTURE_TYPE: VentureTypeStrategy()
136
+ }
137
+
138
+ # Strategy weights with Groq as primary
139
+ self.strategy_weights = strategy_weights or {
140
+ # Primary strategy (highest weight)
141
+ StrategyType.GROQ: 2.5,
142
+
143
+ # Core strategies (high weights)
144
+ StrategyType.CHAIN_OF_THOUGHT: 1.5,
145
+ StrategyType.TREE_OF_THOUGHTS: 1.5,
146
+ StrategyType.META_LEARNING: 1.5,
147
+
148
+ # Agentic strategies (medium-high weights)
149
+ StrategyType.TASK_DECOMPOSITION: 1.3,
150
+ StrategyType.RESOURCE_MANAGEMENT: 1.3,
151
+ StrategyType.CONTEXTUAL_PLANNING: 1.3,
152
+ StrategyType.ADAPTIVE_EXECUTION: 1.3,
153
+ StrategyType.FEEDBACK_INTEGRATION: 1.3,
154
+
155
+ # Domain-specific strategies (context-dependent weights)
156
+ StrategyType.BAYESIAN: 1.2,
157
+ StrategyType.MARKET_ANALYSIS: 1.2,
158
+ StrategyType.PORTFOLIO_OPTIMIZATION: 1.2,
159
+ StrategyType.VENTURE: 1.2,
160
+
161
+ # Other specialized strategies (base weights)
162
+ StrategyType.MONETIZATION: 1.0,
163
+ StrategyType.MULTIMODAL: 1.0,
164
+ StrategyType.NEUROSYMBOLIC: 1.0,
165
+ StrategyType.SPECIALIZED: 1.0,
166
+ StrategyType.VENTURE_TYPE: 1.0,
167
+ StrategyType.RECURSIVE: 1.0,
168
+ StrategyType.ANALOGICAL: 1.0,
169
+ StrategyType.LOCAL_LLM: 1.0 # Reduced weight since using Groq
170
+ }
171
+
172
+ # Performance tracking
173
+ self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list)
174
+ self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float))
175
+ self.synthesis_performance: Dict[str, List[float]] = defaultdict(list)
176
+
177
+ async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult:
178
+ """Main reasoning method combining multiple strategies."""
179
+ try:
180
+ # Analyze task
181
+ task_analysis = await self._analyze_task(query, context)
182
+
183
+ # Select strategies
184
+ selected_strategies = await self._select_strategies(task_analysis, context)
185
+
186
+ # Execute strategies
187
+ strategy_results = await self._execute_strategies(
188
+ selected_strategies, query, context)
189
+
190
+ # Synthesize results
191
+ unified_result = await self._synthesize_results(
192
+ strategy_results, task_analysis, context)
193
+
194
+ # Learn from experience
195
+ self._update_performance(unified_result)
196
+
197
+ return unified_result
198
+
199
+ except Exception as e:
200
+ logging.error(f"Error in unified reasoning: {str(e)}")
201
+ return UnifiedResult(
202
+ success=False,
203
+ answer=f"Error: {str(e)}",
204
+ confidence=0.0,
205
+ strategy_results={},
206
+ synthesis_method="failed",
207
+ meta_insights=[f"Error occurred: {str(e)}"],
208
+ performance_metrics={}
209
+ )
210
+
211
+ async def reason_stream(
212
+ self,
213
+ query: str,
214
+ context: Dict[str, Any] = None,
215
+ strategy_type: Optional[StrategyType] = None,
216
+ chunk_handler: Optional[callable] = None
217
+ ) -> AsyncGenerator[str, None]:
218
+ """
219
+ Stream reasoning results from the selected strategy.
220
+
221
+ Args:
222
+ query: Query to reason about
223
+ context: Additional context for reasoning
224
+ strategy_type: Specific strategy to use (optional)
225
+ chunk_handler: Optional callback for handling chunks
226
+ """
227
+ context = context or {}
228
+
229
+ # Default to Groq strategy for streaming
230
+ if not strategy_type:
231
+ strategy_type = StrategyType.GROQ
232
+
233
+ strategy = self.strategies.get(strategy_type)
234
+ if not strategy:
235
+ yield f"Error: Strategy {strategy_type} not found"
236
+ return
237
+
238
+ if not hasattr(strategy, 'reason_stream'):
239
+ yield f"Error: Strategy {strategy_type} does not support streaming"
240
+ return
241
+
242
+ try:
243
+ async for chunk in strategy.reason_stream(
244
+ query=query,
245
+ context=context,
246
+ chunk_handler=chunk_handler
247
+ ):
248
+ yield chunk
249
+ except Exception as e:
250
+ logging.error(f"Streaming error: {str(e)}")
251
+ yield f"Error: {str(e)}"
252
+
253
+ async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
254
+ """Analyze the task to determine optimal strategy selection."""
255
+ prompt = f"""
256
+ Analyze reasoning task:
257
+ Query: {query}
258
+ Context: {json.dumps(context)}
259
+
260
+ Determine:
261
+ 1. Task type and complexity
262
+ 2. Required reasoning capabilities
263
+ 3. Resource requirements
264
+ 4. Success criteria
265
+ 5. Risk factors
266
+
267
+ Format as:
268
+ [Analysis]
269
+ Type: ...
270
+ Complexity: ...
271
+ Capabilities: ...
272
+ Resources: ...
273
+ Criteria: ...
274
+ Risks: ...
275
+ """
276
+
277
+ response = await context["groq_api"].predict(prompt)
278
+ return self._parse_task_analysis(response["answer"])
279
+
280
+ async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]:
281
+ """Select appropriate strategies based on task analysis."""
282
+ # Calculate strategy scores
283
+ scores: Dict[StrategyType, float] = {}
284
+ for strategy_type in StrategyType:
285
+ base_score = self.strategy_weights[strategy_type]
286
+
287
+ # Task type performance
288
+ task_type = task_analysis["type"]
289
+ type_score = self.task_type_performance[task_type][strategy_type]
290
+
291
+ # Recent performance
292
+ recent_performance = (
293
+ sum(self.strategy_performance[strategy_type][-5:]) / 5
294
+ if self.strategy_performance[strategy_type] else 0.5
295
+ )
296
+
297
+ # Resource match
298
+ resource_match = self._calculate_resource_match(
299
+ strategy_type, task_analysis["resources"])
300
+
301
+ # Capability match
302
+ capability_match = self._calculate_capability_match(
303
+ strategy_type, task_analysis["capabilities"])
304
+
305
+ # Combined score
306
+ scores[strategy_type] = (
307
+ 0.3 * base_score +
308
+ 0.2 * type_score +
309
+ 0.2 * recent_performance +
310
+ 0.15 * resource_match +
311
+ 0.15 * capability_match
312
+ )
313
+
314
+ # Select top strategies
315
+ selected = sorted(
316
+ StrategyType,
317
+ key=lambda x: scores[x],
318
+ reverse=True
319
+ )[:self.parallel_threshold]
320
+
321
+ return selected
322
+
323
+ async def _execute_strategies(self,
324
+ strategies: List[StrategyType],
325
+ query: str,
326
+ context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]:
327
+ """Execute selected strategies in parallel."""
328
+ async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
329
+ strategy = self.strategies[strategy_type]
330
+ start_time = datetime.now()
331
+
332
+ try:
333
+ result = await strategy.reason(query, context)
334
+
335
+ return StrategyResult(
336
+ strategy_type=strategy_type,
337
+ success=result.get("success", False),
338
+ answer=result.get("answer"),
339
+ confidence=result.get("confidence", 0.0),
340
+ reasoning_trace=result.get("reasoning_trace", []),
341
+ metadata=result.get("metadata", {}),
342
+ performance_metrics={
343
+ "execution_time": (datetime.now() - start_time).total_seconds(),
344
+ **result.get("performance_metrics", {})
345
+ }
346
+ )
347
+ except Exception as e:
348
+ logging.error(f"Error in strategy {strategy_type}: {str(e)}")
349
+ return StrategyResult(
350
+ strategy_type=strategy_type,
351
+ success=False,
352
+ answer=None,
353
+ confidence=0.0,
354
+ reasoning_trace=[{"error": str(e)}],
355
+ metadata={},
356
+ performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()}
357
+ )
358
+
359
+ # Execute strategies in parallel
360
+ tasks = [execute_strategy(strategy) for strategy in strategies]
361
+ results = await asyncio.gather(*tasks)
362
+
363
+ return {result.strategy_type: result for result in results}
364
+
365
+ async def _synthesize_results(self,
366
+ strategy_results: Dict[StrategyType, StrategyResult],
367
+ task_analysis: Dict[str, Any],
368
+ context: Dict[str, Any]) -> UnifiedResult:
369
+ """Synthesize results from multiple strategies with specialized combination methods."""
370
+ if not strategy_results:
371
+ return UnifiedResult(
372
+ success=False,
373
+ answer="No strategy results available",
374
+ confidence=0.0,
375
+ strategy_results={},
376
+ synthesis_method="none",
377
+ meta_insights=[],
378
+ performance_metrics={}
379
+ )
380
+
381
+ # Group results by strategy category
382
+ core_results = {k: v for k, v in strategy_results.items()
383
+ if k in {StrategyType.CHAIN_OF_THOUGHT, StrategyType.TREE_OF_THOUGHTS,
384
+ StrategyType.META_LEARNING, StrategyType.LOCAL_LLM}}
385
+
386
+ agentic_results = {k: v for k, v in strategy_results.items()
387
+ if k in {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT,
388
+ StrategyType.CONTEXTUAL_PLANNING, StrategyType.ADAPTIVE_EXECUTION,
389
+ StrategyType.FEEDBACK_INTEGRATION}}
390
+
391
+ market_results = {k: v for k, v in strategy_results.items()
392
+ if k in {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION,
393
+ StrategyType.VENTURE, StrategyType.MONETIZATION}}
394
+
395
+ analytical_results = {k: v for k, v in strategy_results.items()
396
+ if k in {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC,
397
+ StrategyType.SPECIALIZED, StrategyType.MULTIMODAL}}
398
+
399
+ # Determine synthesis method based on task type and available results
400
+ task_type = task_analysis.get('task_type', 'general')
401
+ synthesis_method = self._determine_synthesis_method(task_type, strategy_results.keys())
402
+
403
+ # Apply specialized synthesis based on method
404
+ if synthesis_method == "weighted_voting":
405
+ final_result = await self._weighted_voting_synthesis(strategy_results)
406
+ elif synthesis_method == "market_focused":
407
+ final_result = await self._market_focused_synthesis(market_results, core_results)
408
+ elif synthesis_method == "analytical_consensus":
409
+ final_result = await self._analytical_consensus_synthesis(analytical_results, core_results)
410
+ elif synthesis_method == "agentic_orchestration":
411
+ final_result = await self._agentic_orchestration_synthesis(agentic_results, strategy_results)
412
+ else:
413
+ final_result = await self._ensemble_synthesis(strategy_results)
414
+
415
+ # Generate meta-insights about the synthesis process
416
+ meta_insights = self._generate_meta_insights(strategy_results, synthesis_method)
417
+
418
+ # Calculate aggregate performance metrics
419
+ performance_metrics = self._calculate_synthesis_metrics(strategy_results, final_result)
420
+
421
+ return UnifiedResult(
422
+ success=final_result['success'],
423
+ answer=final_result['answer'],
424
+ confidence=final_result['confidence'],
425
+ strategy_results=strategy_results,
426
+ synthesis_method=synthesis_method,
427
+ meta_insights=meta_insights,
428
+ performance_metrics=performance_metrics
429
+ )
430
+
431
+ def _determine_synthesis_method(self, task_type: str, available_strategies: Set[StrategyType]) -> str:
432
+ """Determine the best synthesis method based on task type and available strategies."""
433
+ market_strategies = {StrategyType.MARKET_ANALYSIS, StrategyType.PORTFOLIO_OPTIMIZATION,
434
+ StrategyType.VENTURE, StrategyType.MONETIZATION}
435
+ analytical_strategies = {StrategyType.BAYESIAN, StrategyType.NEUROSYMBOLIC}
436
+ agentic_strategies = {StrategyType.TASK_DECOMPOSITION, StrategyType.RESOURCE_MANAGEMENT,
437
+ StrategyType.CONTEXTUAL_PLANNING}
438
+
439
+ # Calculate strategy type coverage
440
+ market_coverage = len(market_strategies.intersection(available_strategies))
441
+ analytical_coverage = len(analytical_strategies.intersection(available_strategies))
442
+ agentic_coverage = len(agentic_strategies.intersection(available_strategies))
443
+
444
+ if task_type in ['market_analysis', 'investment'] and market_coverage >= 2:
445
+ return "market_focused"
446
+ elif task_type in ['analysis', 'prediction'] and analytical_coverage >= 2:
447
+ return "analytical_consensus"
448
+ elif task_type in ['planning', 'execution'] and agentic_coverage >= 2:
449
+ return "agentic_orchestration"
450
+ else:
451
+ return "weighted_voting"
452
+
453
+ async def _weighted_voting_synthesis(self, strategy_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
454
+ """Combine results using weighted voting based on strategy confidence and historical performance."""
455
+ weighted_answers = defaultdict(float)
456
+ total_weight = 0
457
+
458
+ for strategy_type, result in strategy_results.items():
459
+ # Calculate weight based on strategy confidence and historical performance
460
+ historical_performance = np.mean(self.strategy_performance[strategy_type]) if self.strategy_performance[strategy_type] else 1.0
461
+ weight = self.strategy_weights[strategy_type] * result.confidence * historical_performance
462
+
463
+ weighted_answers[result.answer] += weight
464
+ total_weight += weight
465
+
466
+ if not total_weight:
467
+ return {'success': False, 'answer': '', 'confidence': 0.0}
468
+
469
+ # Select answer with highest weighted votes
470
+ best_answer = max(weighted_answers.items(), key=lambda x: x[1])
471
+ confidence = best_answer[1] / total_weight
472
+
473
+ return {
474
+ 'success': confidence >= self.min_confidence,
475
+ 'answer': best_answer[0],
476
+ 'confidence': confidence
477
+ }
478
+
479
+ async def _market_focused_synthesis(self, market_results: Dict[StrategyType, StrategyResult],
480
+ core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
481
+ """Synthesize results with emphasis on market-related strategies."""
482
+ market_consensus = await self._weighted_voting_synthesis(market_results)
483
+ core_consensus = await self._weighted_voting_synthesis(core_results)
484
+
485
+ # Combine market and core insights with higher weight for market results
486
+ if market_consensus['confidence'] >= self.min_confidence:
487
+ return {
488
+ 'success': True,
489
+ 'answer': f"{market_consensus['answer']} (Supported by core analysis: {core_consensus['answer']})",
490
+ 'confidence': 0.7 * market_consensus['confidence'] + 0.3 * core_consensus['confidence']
491
+ }
492
+ else:
493
+ return core_consensus
494
+
495
+ async def _analytical_consensus_synthesis(self, analytical_results: Dict[StrategyType, StrategyResult],
496
+ core_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
497
+ """Synthesize results with emphasis on analytical and probabilistic reasoning."""
498
+ analytical_consensus = await self._weighted_voting_synthesis(analytical_results)
499
+ core_consensus = await self._weighted_voting_synthesis(core_results)
500
+
501
+ # Combine analytical and core insights with uncertainty quantification
502
+ if analytical_consensus['confidence'] >= self.min_confidence:
503
+ return {
504
+ 'success': True,
505
+ 'answer': f"{analytical_consensus['answer']} (Confidence interval: {analytical_consensus['confidence']:.2f})",
506
+ 'confidence': 0.6 * analytical_consensus['confidence'] + 0.4 * core_consensus['confidence']
507
+ }
508
+ else:
509
+ return core_consensus
510
+
511
+ async def _agentic_orchestration_synthesis(self, agentic_results: Dict[StrategyType, StrategyResult],
512
+ all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
513
+ """Synthesize results with emphasis on task decomposition and execution planning."""
514
+ # Extract task decomposition and planning insights
515
+ task_structure = self._extract_task_structure(agentic_results)
516
+ execution_plan = self._create_execution_plan(task_structure, all_results)
517
+
518
+ # Combine results according to the execution plan
519
+ synthesized_result = self._execute_synthesis_plan(execution_plan, all_results)
520
+
521
+ return {
522
+ 'success': synthesized_result['confidence'] >= self.min_confidence,
523
+ 'answer': synthesized_result['answer'],
524
+ 'confidence': synthesized_result['confidence']
525
+ }
526
+
527
+ def _generate_meta_insights(self, strategy_results: Dict[StrategyType, StrategyResult],
528
+ synthesis_method: str) -> List[str]:
529
+ """Generate meta-insights about the synthesis process and strategy performance."""
530
+ insights = []
531
+
532
+ # Analyze strategy agreement
533
+ agreement_rate = self._calculate_strategy_agreement(strategy_results)
534
+ insights.append(f"Strategy agreement rate: {agreement_rate:.2f}")
535
+
536
+ # Identify strongest and weakest strategies
537
+ strategy_performances = [(st, res.confidence) for st, res in strategy_results.items()]
538
+ best_strategy = max(strategy_performances, key=lambda x: x[1])
539
+ worst_strategy = min(strategy_performances, key=lambda x: x[1])
540
+
541
+ insights.append(f"Most confident strategy: {best_strategy[0]} ({best_strategy[1]:.2f})")
542
+ insights.append(f"Synthesis method used: {synthesis_method}")
543
+
544
+ return insights
545
+
546
+ def _calculate_synthesis_metrics(self, strategy_results: Dict[StrategyType, StrategyResult],
547
+ final_result: Dict[str, Any]) -> Dict[str, Any]:
548
+ """Calculate comprehensive metrics about the synthesis process."""
549
+ return {
550
+ 'strategy_count': len(strategy_results),
551
+ 'average_confidence': np.mean([r.confidence for r in strategy_results.values()]),
552
+ 'confidence_std': np.std([r.confidence for r in strategy_results.values()]),
553
+ 'final_confidence': final_result['confidence'],
554
+ 'strategy_agreement': self._calculate_strategy_agreement(strategy_results)
555
+ }
556
+
557
+ def _update_performance(self, result: UnifiedResult):
558
+ """Update performance metrics and strategy weights."""
559
+ # Update strategy performance
560
+ for strategy_type, strategy_result in result.strategy_results.items():
561
+ self.strategy_performance[strategy_type].append(strategy_result.confidence)
562
+
563
+ # Update weights using exponential moving average
564
+ current_weight = self.strategy_weights[strategy_type]
565
+ performance = strategy_result.confidence
566
+ self.strategy_weights[strategy_type] = (
567
+ (1 - self.learning_rate) * current_weight +
568
+ self.learning_rate * performance
569
+ )
570
+
571
+ # Update synthesis performance
572
+ self.synthesis_performance[result.synthesis_method].append(result.confidence)
573
+
574
+ def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float:
575
+ """Calculate how well a strategy matches required resources."""
576
+ # Implementation-specific resource matching logic
577
+ return 0.8 # Placeholder
578
+
579
+ def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float:
580
+ """Calculate how well a strategy matches required capabilities."""
581
+ # Implementation-specific capability matching logic
582
+ return 0.8 # Placeholder
583
+
584
+ def _parse_task_analysis(self, response: str) -> Dict[str, Any]:
585
+ """Parse task analysis from response."""
586
+ analysis = {
587
+ "type": "",
588
+ "complexity": 0.0,
589
+ "capabilities": [],
590
+ "resources": {},
591
+ "criteria": [],
592
+ "risks": []
593
+ }
594
+
595
+ for line in response.split('\n'):
596
+ line = line.strip()
597
+ if line.startswith('Type:'):
598
+ analysis["type"] = line[5:].strip()
599
+ elif line.startswith('Complexity:'):
600
+ try:
601
+ analysis["complexity"] = float(line[11:].strip())
602
+ except:
603
+ pass
604
+ elif line.startswith('Capabilities:'):
605
+ analysis["capabilities"] = [c.strip() for c in line[13:].split(',')]
606
+ elif line.startswith('Resources:'):
607
+ try:
608
+ analysis["resources"] = json.loads(line[10:].strip())
609
+ except:
610
+ analysis["resources"] = {"raw": line[10:].strip()}
611
+ elif line.startswith('Criteria:'):
612
+ analysis["criteria"] = [c.strip() for c in line[9:].split(',')]
613
+ elif line.startswith('Risks:'):
614
+ analysis["risks"] = [r.strip() for r in line[7:].split(',')]
615
+
616
+ return analysis
617
+
618
+ def _parse_synthesis(self, response: str) -> Dict[str, Any]:
619
+ """Parse synthesis result from response."""
620
+ synthesis = {
621
+ "method": "",
622
+ "answer": "",
623
+ "confidence": 0.0,
624
+ "insights": [],
625
+ "performance": {}
626
+ }
627
+
628
+ for line in response.split('\n'):
629
+ line = line.strip()
630
+ if line.startswith('Method:'):
631
+ synthesis["method"] = line[7:].strip()
632
+ elif line.startswith('Answer:'):
633
+ synthesis["answer"] = line[7:].strip()
634
+ elif line.startswith('Confidence:'):
635
+ try:
636
+ synthesis["confidence"] = float(line[11:].strip())
637
+ except:
638
+ pass
639
+ elif line.startswith('Insights:'):
640
+ synthesis["insights"] = [i.strip() for i in line[9:].split(',')]
641
+ elif line.startswith('Performance:'):
642
+ try:
643
+ synthesis["performance"] = json.loads(line[12:].strip())
644
+ except:
645
+ synthesis["performance"] = {"raw": line[12:].strip()}
646
+
647
+ return synthesis
648
+
649
+ def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]:
650
+ """Convert strategy result to dictionary for serialization."""
651
+ return {
652
+ "strategy_type": result.strategy_type.value,
653
+ "success": result.success,
654
+ "answer": result.answer,
655
+ "confidence": result.confidence,
656
+ "reasoning_trace": result.reasoning_trace,
657
+ "metadata": result.metadata,
658
+ "performance_metrics": result.performance_metrics,
659
+ "timestamp": result.timestamp.isoformat()
660
+ }
661
+
662
+ def get_performance_metrics(self) -> Dict[str, Any]:
663
+ """Get comprehensive performance metrics."""
664
+ return {
665
+ "strategy_weights": dict(self.strategy_weights),
666
+ "average_performance": {
667
+ strategy_type.value: sum(scores) / len(scores) if scores else 0
668
+ for strategy_type, scores in self.strategy_performance.items()
669
+ },
670
+ "synthesis_success": {
671
+ method: sum(scores) / len(scores) if scores else 0
672
+ for method, scores in self.synthesis_performance.items()
673
+ },
674
+ "task_type_performance": {
675
+ task_type: dict(strategy_scores)
676
+ for task_type, strategy_scores in self.task_type_performance.items()
677
+ }
678
+ }
679
+
680
+ def clear_performance_history(self):
681
+ """Clear performance history and reset weights."""
682
+ self.strategy_performance.clear()
683
+ self.task_type_performance.clear()
684
+ self.synthesis_performance.clear()
685
+ self.strategy_weights = {
686
+ strategy_type: 1.0 for strategy_type in StrategyType
687
+ }
688
+
689
+ def _extract_task_structure(self, agentic_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
690
+ """Extract task structure from agentic strategy results."""
691
+ # Implementation-specific task structure extraction logic
692
+ return {}
693
+
694
+ def _create_execution_plan(self, task_structure: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
695
+ """Create execution plan based on task structure and strategy results."""
696
+ # Implementation-specific execution plan creation logic
697
+ return {}
698
+
699
+ def _execute_synthesis_plan(self, execution_plan: Dict[str, Any], all_results: Dict[StrategyType, StrategyResult]) -> Dict[str, Any]:
700
+ """Execute synthesis plan and combine results."""
701
+ # Implementation-specific synthesis plan execution logic
702
+ return {}
703
+
704
+ def _calculate_strategy_agreement(self, strategy_results: Dict[StrategyType, StrategyResult]) -> float:
705
+ """Calculate agreement rate among strategies."""
706
+ # Implementation-specific strategy agreement calculation logic
707
+ return 0.0
reasoning/venture_strategies.py ADDED
@@ -0,0 +1,701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Specialized strategies for autonomous business and revenue generation."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class VentureType(Enum):
15
+ """Types of business ventures."""
16
+ AI_STARTUP = "ai_startup"
17
+ SAAS = "saas"
18
+ API_SERVICE = "api_service"
19
+ DATA_ANALYTICS = "data_analytics"
20
+ AUTOMATION_SERVICE = "automation_service"
21
+ CONSULTING = "consulting"
22
+ DIGITAL_PRODUCTS = "digital_products"
23
+ MARKETPLACE = "marketplace"
24
+
25
+ class RevenueStream(Enum):
26
+ """Types of revenue streams."""
27
+ SUBSCRIPTION = "subscription"
28
+ USAGE_BASED = "usage_based"
29
+ LICENSING = "licensing"
30
+ CONSULTING = "consulting"
31
+ PRODUCT_SALES = "product_sales"
32
+ COMMISSION = "commission"
33
+ ADVERTISING = "advertising"
34
+ PARTNERSHIP = "partnership"
35
+
36
+ @dataclass
37
+ class VentureMetrics:
38
+ """Key business metrics."""
39
+ revenue: float
40
+ profit_margin: float
41
+ customer_acquisition_cost: float
42
+ lifetime_value: float
43
+ churn_rate: float
44
+ growth_rate: float
45
+ burn_rate: float
46
+ runway_months: float
47
+ roi: float
48
+
49
+ @dataclass
50
+ class MarketOpportunity:
51
+ """Market opportunity analysis."""
52
+ market_size: float
53
+ growth_potential: float
54
+ competition_level: float
55
+ entry_barriers: float
56
+ regulatory_risks: float
57
+ technology_risks: float
58
+ monetization_potential: float
59
+
60
+ class AIStartupStrategy(ReasoningStrategy):
61
+ """
62
+ Advanced AI startup strategy that:
63
+ 1. Identifies profitable AI applications
64
+ 2. Analyzes market opportunities
65
+ 3. Develops MVP strategies
66
+ 4. Plans scaling approaches
67
+ 5. Optimizes revenue streams
68
+ """
69
+
70
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
71
+ super().__init__()
72
+ self.config = config or {}
73
+
74
+ # Standard reasoning parameters
75
+ self.min_confidence = self.config.get('min_confidence', 0.7)
76
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
77
+ self.learning_rate = self.config.get('learning_rate', 0.1)
78
+ self.strategy_weights = self.config.get('strategy_weights', {
79
+ "LOCAL_LLM": 0.8,
80
+ "CHAIN_OF_THOUGHT": 0.6,
81
+ "TREE_OF_THOUGHTS": 0.5,
82
+ "META_LEARNING": 0.4
83
+ })
84
+
85
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
86
+ """Generate AI startup strategy."""
87
+ try:
88
+ # Market analysis
89
+ market = await self._analyze_market(query, context)
90
+
91
+ # Technology assessment
92
+ tech = await self._assess_technology(market, context)
93
+
94
+ # Business model
95
+ model = await self._develop_business_model(tech, context)
96
+
97
+ # Growth strategy
98
+ strategy = await self._create_growth_strategy(model, context)
99
+
100
+ # Financial projections
101
+ projections = await self._project_financials(strategy, context)
102
+
103
+ return {
104
+ "success": projections["annual_profit"] >= 1_000_000,
105
+ "market_analysis": market,
106
+ "tech_assessment": tech,
107
+ "business_model": model,
108
+ "growth_strategy": strategy,
109
+ "financials": projections,
110
+ "confidence": self._calculate_confidence(projections)
111
+ }
112
+ except Exception as e:
113
+ logging.error(f"Error in AI startup strategy: {str(e)}")
114
+ return {"success": False, "error": str(e)}
115
+
116
+ class SaaSVentureStrategy(ReasoningStrategy):
117
+ """
118
+ Advanced SaaS venture strategy that:
119
+ 1. Identifies scalable SaaS opportunities
120
+ 2. Develops pricing strategies
121
+ 3. Plans customer acquisition
122
+ 4. Optimizes retention
123
+ 5. Maximizes recurring revenue
124
+ """
125
+
126
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
127
+ super().__init__()
128
+ self.config = config or {}
129
+
130
+ # Standard reasoning parameters
131
+ self.min_confidence = self.config.get('min_confidence', 0.7)
132
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
133
+ self.learning_rate = self.config.get('learning_rate', 0.1)
134
+ self.strategy_weights = self.config.get('strategy_weights', {
135
+ "LOCAL_LLM": 0.8,
136
+ "CHAIN_OF_THOUGHT": 0.6,
137
+ "TREE_OF_THOUGHTS": 0.5,
138
+ "META_LEARNING": 0.4
139
+ })
140
+
141
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
142
+ """Generate SaaS venture strategy."""
143
+ try:
144
+ # Opportunity analysis
145
+ opportunity = await self._analyze_opportunity(query, context)
146
+
147
+ # Product strategy
148
+ product = await self._develop_product_strategy(opportunity, context)
149
+
150
+ # Pricing model
151
+ pricing = await self._create_pricing_model(product, context)
152
+
153
+ # Growth plan
154
+ growth = await self._plan_growth(pricing, context)
155
+
156
+ # Revenue projections
157
+ projections = await self._project_revenue(growth, context)
158
+
159
+ return {
160
+ "success": projections["annual_revenue"] >= 1_000_000,
161
+ "opportunity": opportunity,
162
+ "product": product,
163
+ "pricing": pricing,
164
+ "growth": growth,
165
+ "projections": projections
166
+ }
167
+ except Exception as e:
168
+ logging.error(f"Error in SaaS venture strategy: {str(e)}")
169
+ return {"success": False, "error": str(e)}
170
+
171
+ class AutomationVentureStrategy(ReasoningStrategy):
172
+ """
173
+ Advanced automation venture strategy that:
174
+ 1. Identifies automation opportunities
175
+ 2. Analyzes cost-saving potential
176
+ 3. Develops automation solutions
177
+ 4. Plans implementation
178
+ 5. Maximizes ROI
179
+ """
180
+
181
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
182
+ super().__init__()
183
+ self.config = config or {}
184
+
185
+ # Standard reasoning parameters
186
+ self.min_confidence = self.config.get('min_confidence', 0.7)
187
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
188
+ self.learning_rate = self.config.get('learning_rate', 0.1)
189
+ self.strategy_weights = self.config.get('strategy_weights', {
190
+ "LOCAL_LLM": 0.8,
191
+ "CHAIN_OF_THOUGHT": 0.6,
192
+ "TREE_OF_THOUGHTS": 0.5,
193
+ "META_LEARNING": 0.4
194
+ })
195
+
196
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
197
+ """Generate automation venture strategy."""
198
+ try:
199
+ # Opportunity identification
200
+ opportunities = await self._identify_opportunities(query, context)
201
+
202
+ # Solution development
203
+ solutions = await self._develop_solutions(opportunities, context)
204
+
205
+ # Implementation strategy
206
+ implementation = await self._create_implementation_strategy(solutions, context)
207
+
208
+ # ROI analysis
209
+ roi = await self._analyze_roi(implementation, context)
210
+
211
+ # Scale strategy
212
+ scale = await self._create_scale_strategy(roi, context)
213
+
214
+ return {
215
+ "success": roi["annual_profit"] >= 1_000_000,
216
+ "opportunities": opportunities,
217
+ "solutions": solutions,
218
+ "implementation": implementation,
219
+ "roi": roi,
220
+ "scale": scale
221
+ }
222
+ except Exception as e:
223
+ logging.error(f"Error in automation venture strategy: {str(e)}")
224
+ return {"success": False, "error": str(e)}
225
+
226
+ class DataVentureStrategy(ReasoningStrategy):
227
+ """
228
+ Advanced data venture strategy that:
229
+ 1. Identifies valuable data opportunities
230
+ 2. Develops data products
231
+ 3. Creates monetization strategies
232
+ 4. Ensures compliance
233
+ 5. Maximizes data value
234
+ """
235
+
236
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
237
+ super().__init__()
238
+ self.config = config or {}
239
+
240
+ # Standard reasoning parameters
241
+ self.min_confidence = self.config.get('min_confidence', 0.7)
242
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
243
+ self.learning_rate = self.config.get('learning_rate', 0.1)
244
+ self.strategy_weights = self.config.get('strategy_weights', {
245
+ "LOCAL_LLM": 0.8,
246
+ "CHAIN_OF_THOUGHT": 0.6,
247
+ "TREE_OF_THOUGHTS": 0.5,
248
+ "META_LEARNING": 0.4
249
+ })
250
+
251
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
252
+ """Generate data venture strategy."""
253
+ try:
254
+ # Data opportunity analysis
255
+ opportunity = await self._analyze_data_opportunity(query, context)
256
+
257
+ # Product development
258
+ product = await self._develop_data_product(opportunity, context)
259
+
260
+ # Monetization strategy
261
+ monetization = await self._create_monetization_strategy(product, context)
262
+
263
+ # Compliance plan
264
+ compliance = await self._ensure_compliance(monetization, context)
265
+
266
+ # Scale plan
267
+ scale = await self._plan_scaling(compliance, context)
268
+
269
+ return {
270
+ "success": monetization["annual_revenue"] >= 1_000_000,
271
+ "opportunity": opportunity,
272
+ "product": product,
273
+ "monetization": monetization,
274
+ "compliance": compliance,
275
+ "scale": scale
276
+ }
277
+ except Exception as e:
278
+ logging.error(f"Error in data venture strategy: {str(e)}")
279
+ return {"success": False, "error": str(e)}
280
+
281
+ class APIVentureStrategy(ReasoningStrategy):
282
+ """
283
+ Advanced API venture strategy that:
284
+ 1. Identifies API opportunities
285
+ 2. Develops API products
286
+ 3. Creates pricing models
287
+ 4. Plans scaling
288
+ 5. Maximizes API value
289
+ """
290
+
291
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
292
+ super().__init__()
293
+ self.config = config or {}
294
+
295
+ # Standard reasoning parameters
296
+ self.min_confidence = self.config.get('min_confidence', 0.7)
297
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
298
+ self.learning_rate = self.config.get('learning_rate', 0.1)
299
+ self.strategy_weights = self.config.get('strategy_weights', {
300
+ "LOCAL_LLM": 0.8,
301
+ "CHAIN_OF_THOUGHT": 0.6,
302
+ "TREE_OF_THOUGHTS": 0.5,
303
+ "META_LEARNING": 0.4
304
+ })
305
+
306
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
307
+ """Generate API venture strategy."""
308
+ try:
309
+ # API opportunity analysis
310
+ opportunity = await self._analyze_api_opportunity(query, context)
311
+
312
+ # Product development
313
+ product = await self._develop_api_product(opportunity, context)
314
+
315
+ # Pricing strategy
316
+ pricing = await self._create_api_pricing(product, context)
317
+
318
+ # Scale strategy
319
+ scale = await self._plan_api_scaling(pricing, context)
320
+
321
+ # Revenue projections
322
+ projections = await self._project_api_revenue(scale, context)
323
+
324
+ return {
325
+ "success": projections["annual_revenue"] >= 1_000_000,
326
+ "opportunity": opportunity,
327
+ "product": product,
328
+ "pricing": pricing,
329
+ "scale": scale,
330
+ "projections": projections
331
+ }
332
+ except Exception as e:
333
+ logging.error(f"Error in API venture strategy: {str(e)}")
334
+ return {"success": False, "error": str(e)}
335
+
336
+ class MarketplaceVentureStrategy(ReasoningStrategy):
337
+ """
338
+ Advanced marketplace venture strategy that:
339
+ 1. Identifies marketplace opportunities
340
+ 2. Develops platform strategy
341
+ 3. Plans liquidity generation
342
+ 4. Optimizes matching
343
+ 5. Maximizes transaction value
344
+ """
345
+
346
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
347
+ super().__init__()
348
+ self.config = config or {}
349
+
350
+ # Standard reasoning parameters
351
+ self.min_confidence = self.config.get('min_confidence', 0.7)
352
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
353
+ self.learning_rate = self.config.get('learning_rate', 0.1)
354
+ self.strategy_weights = self.config.get('strategy_weights', {
355
+ "LOCAL_LLM": 0.8,
356
+ "CHAIN_OF_THOUGHT": 0.6,
357
+ "TREE_OF_THOUGHTS": 0.5,
358
+ "META_LEARNING": 0.4
359
+ })
360
+
361
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
362
+ """Generate marketplace venture strategy."""
363
+ try:
364
+ # Opportunity analysis
365
+ opportunity = await self._analyze_marketplace_opportunity(query, context)
366
+
367
+ # Platform strategy
368
+ platform = await self._develop_platform_strategy(opportunity, context)
369
+
370
+ # Liquidity strategy
371
+ liquidity = await self._create_liquidity_strategy(platform, context)
372
+
373
+ # Growth strategy
374
+ growth = await self._plan_marketplace_growth(liquidity, context)
375
+
376
+ # Revenue projections
377
+ projections = await self._project_marketplace_revenue(growth, context)
378
+
379
+ return {
380
+ "success": projections["annual_revenue"] >= 1_000_000,
381
+ "opportunity": opportunity,
382
+ "platform": platform,
383
+ "liquidity": liquidity,
384
+ "growth": growth,
385
+ "projections": projections
386
+ }
387
+ except Exception as e:
388
+ logging.error(f"Error in marketplace venture strategy: {str(e)}")
389
+ return {"success": False, "error": str(e)}
390
+
391
+ class VenturePortfolioStrategy(ReasoningStrategy):
392
+ """
393
+ Advanced venture portfolio strategy that:
394
+ 1. Optimizes venture mix
395
+ 2. Balances risk-reward
396
+ 3. Allocates resources
397
+ 4. Manages dependencies
398
+ 5. Maximizes portfolio value
399
+ """
400
+
401
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
402
+ super().__init__()
403
+ self.config = config or {}
404
+
405
+ # Standard reasoning parameters
406
+ self.min_confidence = self.config.get('min_confidence', 0.7)
407
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
408
+ self.learning_rate = self.config.get('learning_rate', 0.1)
409
+ self.strategy_weights = self.config.get('strategy_weights', {
410
+ "LOCAL_LLM": 0.8,
411
+ "CHAIN_OF_THOUGHT": 0.6,
412
+ "TREE_OF_THOUGHTS": 0.5,
413
+ "META_LEARNING": 0.4
414
+ })
415
+
416
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
417
+ """Generate venture portfolio strategy."""
418
+ try:
419
+ # Portfolio analysis
420
+ analysis = await self._analyze_portfolio(query, context)
421
+
422
+ # Venture selection
423
+ selection = await self._select_ventures(analysis, context)
424
+
425
+ # Resource allocation
426
+ allocation = await self._allocate_resources(selection, context)
427
+
428
+ # Risk management
429
+ risk = await self._manage_risk(allocation, context)
430
+
431
+ # Portfolio projections
432
+ projections = await self._project_portfolio(risk, context)
433
+
434
+ return {
435
+ "success": projections["annual_profit"] >= 1_000_000,
436
+ "analysis": analysis,
437
+ "selection": selection,
438
+ "allocation": allocation,
439
+ "risk": risk,
440
+ "projections": projections
441
+ }
442
+ except Exception as e:
443
+ logging.error(f"Error in venture portfolio strategy: {str(e)}")
444
+ return {"success": False, "error": str(e)}
445
+
446
+ async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
447
+ """Analyze potential venture portfolio."""
448
+ prompt = f"""
449
+ Analyze venture portfolio opportunities:
450
+ Query: {query}
451
+ Context: {json.dumps(context)}
452
+
453
+ Consider:
454
+ 1. Market opportunities
455
+ 2. Technology trends
456
+ 3. Resource requirements
457
+ 4. Risk factors
458
+ 5. Synergy potential
459
+
460
+ Format as:
461
+ [Analysis]
462
+ Opportunities: ...
463
+ Trends: ...
464
+ Resources: ...
465
+ Risks: ...
466
+ Synergies: ...
467
+ """
468
+
469
+ response = await context["groq_api"].predict(prompt)
470
+ return self._parse_portfolio_analysis(response["answer"])
471
+
472
+ def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
473
+ """Parse portfolio analysis from response."""
474
+ analysis = {
475
+ "opportunities": [],
476
+ "trends": [],
477
+ "resources": {},
478
+ "risks": [],
479
+ "synergies": []
480
+ }
481
+
482
+ current_section = None
483
+ for line in response.split('\n'):
484
+ line = line.strip()
485
+ if line.startswith('Opportunities:'):
486
+ current_section = "opportunities"
487
+ elif line.startswith('Trends:'):
488
+ current_section = "trends"
489
+ elif line.startswith('Resources:'):
490
+ current_section = "resources"
491
+ elif line.startswith('Risks:'):
492
+ current_section = "risks"
493
+ elif line.startswith('Synergies:'):
494
+ current_section = "synergies"
495
+ elif current_section and line:
496
+ if current_section == "resources":
497
+ try:
498
+ key, value = line.split(':')
499
+ analysis[current_section][key.strip()] = value.strip()
500
+ except:
501
+ pass
502
+ else:
503
+ analysis[current_section].append(line)
504
+
505
+ return analysis
506
+
507
+ def get_venture_metrics(self) -> Dict[str, Any]:
508
+ """Get comprehensive venture metrics."""
509
+ return {
510
+ "portfolio_metrics": {
511
+ "total_ventures": len(self.ventures),
512
+ "profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
513
+ "total_revenue": sum(v.metrics.revenue for v in self.ventures),
514
+ "average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
515
+ "portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
516
+ },
517
+ "market_metrics": {
518
+ "total_market_size": sum(v.opportunity.market_size for v in self.ventures),
519
+ "average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
520
+ "risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
521
+ },
522
+ "performance_metrics": {
523
+ "customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
524
+ "lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
525
+ "churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
526
+ "burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
527
+ }
528
+ }
529
+
530
+ class VentureStrategy(ReasoningStrategy):
531
+ """
532
+ Advanced venture strategy that combines multiple specialized strategies
533
+ to generate comprehensive business plans and recommendations.
534
+ """
535
+
536
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
537
+ """Initialize venture strategy with component strategies."""
538
+ super().__init__()
539
+ self.config = config or {}
540
+
541
+ # Standard reasoning parameters
542
+ self.min_confidence = self.config.get('min_confidence', 0.7)
543
+ self.parallel_threshold = self.config.get('parallel_threshold', 3)
544
+ self.learning_rate = self.config.get('learning_rate', 0.1)
545
+ self.strategy_weights = self.config.get('strategy_weights', {
546
+ "LOCAL_LLM": 0.8,
547
+ "CHAIN_OF_THOUGHT": 0.6,
548
+ "TREE_OF_THOUGHTS": 0.5,
549
+ "META_LEARNING": 0.4
550
+ })
551
+
552
+ # Initialize component strategies with shared config
553
+ strategy_config = {
554
+ 'min_confidence': self.min_confidence,
555
+ 'parallel_threshold': self.parallel_threshold,
556
+ 'learning_rate': self.learning_rate,
557
+ 'strategy_weights': self.strategy_weights
558
+ }
559
+
560
+ self.strategies = {
561
+ VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
562
+ VentureType.SAAS: SaaSVentureStrategy(strategy_config),
563
+ VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
564
+ VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
565
+ VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
566
+ VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
567
+ }
568
+
569
+ # Portfolio strategy for multi-venture optimization
570
+ self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
571
+
572
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
573
+ """
574
+ Generate venture strategy based on query and context.
575
+
576
+ Args:
577
+ query: The venture strategy query
578
+ context: Additional context and parameters
579
+
580
+ Returns:
581
+ Dict containing venture strategy and confidence scores
582
+ """
583
+ try:
584
+ # Determine venture type from query/context
585
+ venture_type = self._determine_venture_type(query, context)
586
+
587
+ # Get strategy for venture type
588
+ strategy = self.strategies.get(venture_type)
589
+ if not strategy:
590
+ raise ValueError(f"Unsupported venture type: {venture_type}")
591
+
592
+ # Generate strategy
593
+ strategy_result = await strategy.reason(query, context)
594
+
595
+ # Get portfolio analysis
596
+ portfolio_result = await self.portfolio_strategy.reason(query, context)
597
+
598
+ # Combine results
599
+ combined_result = self._combine_results(
600
+ strategy_result,
601
+ portfolio_result,
602
+ venture_type
603
+ )
604
+
605
+ return {
606
+ 'answer': self._format_strategy(combined_result),
607
+ 'confidence': combined_result.get('confidence', 0.0),
608
+ 'venture_type': venture_type.value,
609
+ 'strategy': strategy_result,
610
+ 'portfolio_analysis': portfolio_result
611
+ }
612
+
613
+ except Exception as e:
614
+ logging.error(f"Venture strategy generation failed: {str(e)}")
615
+ return {
616
+ 'error': f"Venture strategy generation failed: {str(e)}",
617
+ 'confidence': 0.0
618
+ }
619
+
620
+ def _determine_venture_type(self, query: str, context: Dict[str, Any]) -> VentureType:
621
+ """Determine venture type from query and context."""
622
+ # Use context if available
623
+ if 'venture_type' in context:
624
+ return VentureType(context['venture_type'])
625
+
626
+ # Simple keyword matching
627
+ query_lower = query.lower()
628
+ if any(term in query_lower for term in ['ai', 'ml', 'model', 'neural']):
629
+ return VentureType.AI_STARTUP
630
+ elif any(term in query_lower for term in ['saas', 'software', 'cloud']):
631
+ return VentureType.SAAS
632
+ elif any(term in query_lower for term in ['automate', 'automation', 'workflow']):
633
+ return VentureType.AUTOMATION_SERVICE
634
+ elif any(term in query_lower for term in ['data', 'analytics', 'insights']):
635
+ return VentureType.DATA_ANALYTICS
636
+ elif any(term in query_lower for term in ['api', 'service', 'endpoint']):
637
+ return VentureType.API_SERVICE
638
+ elif any(term in query_lower for term in ['marketplace', 'platform', 'network']):
639
+ return VentureType.MARKETPLACE
640
+
641
+ # Default to AI startup if unclear
642
+ return VentureType.AI_STARTUP
643
+
644
+ def _combine_results(
645
+ self,
646
+ strategy_result: Dict[str, Any],
647
+ portfolio_result: Dict[str, Any],
648
+ venture_type: VentureType
649
+ ) -> Dict[str, Any]:
650
+ """Combine strategy and portfolio results."""
651
+ return {
652
+ 'venture_type': venture_type.value,
653
+ 'strategy': strategy_result.get('strategy', {}),
654
+ 'metrics': strategy_result.get('metrics', {}),
655
+ 'portfolio_fit': portfolio_result.get('portfolio_fit', {}),
656
+ 'recommendations': strategy_result.get('recommendations', []),
657
+ 'confidence': min(
658
+ strategy_result.get('confidence', 0.0),
659
+ portfolio_result.get('confidence', 0.0)
660
+ )
661
+ }
662
+
663
+ def _format_strategy(self, result: Dict[str, Any]) -> str:
664
+ """Format venture strategy into readable text."""
665
+ sections = []
666
+
667
+ # Venture type
668
+ sections.append(f"Venture Type: {result['venture_type'].replace('_', ' ').title()}")
669
+
670
+ # Strategy overview
671
+ if 'strategy' in result:
672
+ strategy = result['strategy']
673
+ sections.append("\nStrategy Overview:")
674
+ for key, value in strategy.items():
675
+ sections.append(f"- {key.replace('_', ' ').title()}: {value}")
676
+
677
+ # Key metrics
678
+ if 'metrics' in result:
679
+ metrics = result['metrics']
680
+ sections.append("\nKey Metrics:")
681
+ for key, value in metrics.items():
682
+ if isinstance(value, (int, float)):
683
+ sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
684
+ else:
685
+ sections.append(f"- {key.replace('_', ' ').title()}: {value}")
686
+
687
+ # Portfolio fit
688
+ if 'portfolio_fit' in result:
689
+ fit = result['portfolio_fit']
690
+ sections.append("\nPortfolio Analysis:")
691
+ for key, value in fit.items():
692
+ sections.append(f"- {key.replace('_', ' ').title()}: {value}")
693
+
694
+ # Recommendations
695
+ if 'recommendations' in result:
696
+ recs = result['recommendations']
697
+ sections.append("\nKey Recommendations:")
698
+ for rec in recs:
699
+ sections.append(f"- {rec}")
700
+
701
+ return "\n".join(sections)
reasoning/venture_types.py ADDED
@@ -0,0 +1,332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Additional venture types for business optimization."""
2
+
3
+ import logging
4
+ from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
5
+ import json
6
+ from dataclasses import dataclass, field
7
+ from enum import Enum
8
+ from datetime import datetime
9
+ import numpy as np
10
+ from collections import defaultdict
11
+
12
+ from .base import ReasoningStrategy
13
+
14
+ class AIInfrastructureStrategy(ReasoningStrategy):
15
+ """
16
+ AI infrastructure venture strategy that:
17
+ 1. Identifies infrastructure needs
18
+ 2. Develops cloud solutions
19
+ 3. Optimizes compute resources
20
+ 4. Manages scalability
21
+ 5. Ensures reliability
22
+ """
23
+
24
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
25
+ """Generate AI infrastructure strategy."""
26
+ try:
27
+ # Market analysis
28
+ market = await self._analyze_market(query, context)
29
+
30
+ # Infrastructure design
31
+ design = await self._design_infrastructure(market, context)
32
+
33
+ # Optimization strategy
34
+ optimization = await self._create_optimization_strategy(design, context)
35
+
36
+ # Scaling plan
37
+ scaling = await self._plan_scaling(optimization, context)
38
+
39
+ # Revenue projections
40
+ projections = await self._project_revenue(scaling, context)
41
+
42
+ return {
43
+ "success": projections["annual_revenue"] >= 1_000_000,
44
+ "market": market,
45
+ "design": design,
46
+ "optimization": optimization,
47
+ "scaling": scaling,
48
+ "projections": projections
49
+ }
50
+ except Exception as e:
51
+ logging.error(f"Error in AI infrastructure strategy: {str(e)}")
52
+ return {"success": False, "error": str(e)}
53
+
54
+ class AIConsultingStrategy(ReasoningStrategy):
55
+ """
56
+ AI consulting venture strategy that:
57
+ 1. Identifies consulting opportunities
58
+ 2. Develops service offerings
59
+ 3. Creates delivery frameworks
60
+ 4. Manages client relationships
61
+ 5. Scales operations
62
+ """
63
+
64
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
65
+ """Generate AI consulting strategy."""
66
+ try:
67
+ # Market analysis
68
+ market = await self._analyze_consulting_market(query, context)
69
+
70
+ # Service design
71
+ services = await self._design_services(market, context)
72
+
73
+ # Delivery framework
74
+ framework = await self._create_delivery_framework(services, context)
75
+
76
+ # Growth strategy
77
+ growth = await self._plan_growth(framework, context)
78
+
79
+ # Revenue projections
80
+ projections = await self._project_consulting_revenue(growth, context)
81
+
82
+ return {
83
+ "success": projections["annual_revenue"] >= 1_000_000,
84
+ "market": market,
85
+ "services": services,
86
+ "framework": framework,
87
+ "growth": growth,
88
+ "projections": projections
89
+ }
90
+ except Exception as e:
91
+ logging.error(f"Error in AI consulting strategy: {str(e)}")
92
+ return {"success": False, "error": str(e)}
93
+
94
+ class AIProductStrategy(ReasoningStrategy):
95
+ """
96
+ AI product venture strategy that:
97
+ 1. Identifies product opportunities
98
+ 2. Develops product roadmap
99
+ 3. Creates go-to-market strategy
100
+ 4. Manages product lifecycle
101
+ 5. Scales distribution
102
+ """
103
+
104
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
105
+ """Generate AI product strategy."""
106
+ try:
107
+ # Market analysis
108
+ market = await self._analyze_product_market(query, context)
109
+
110
+ # Product development
111
+ product = await self._develop_product_strategy(market, context)
112
+
113
+ # Go-to-market
114
+ gtm = await self._create_gtm_strategy(product, context)
115
+
116
+ # Scale strategy
117
+ scale = await self._plan_product_scaling(gtm, context)
118
+
119
+ # Revenue projections
120
+ projections = await self._project_product_revenue(scale, context)
121
+
122
+ return {
123
+ "success": projections["annual_revenue"] >= 1_000_000,
124
+ "market": market,
125
+ "product": product,
126
+ "gtm": gtm,
127
+ "scale": scale,
128
+ "projections": projections
129
+ }
130
+ except Exception as e:
131
+ logging.error(f"Error in AI product strategy: {str(e)}")
132
+ return {"success": False, "error": str(e)}
133
+
134
+ class FinTechStrategy(ReasoningStrategy):
135
+ """
136
+ FinTech venture strategy that:
137
+ 1. Identifies fintech opportunities
138
+ 2. Develops financial products
139
+ 3. Ensures compliance
140
+ 4. Manages risk
141
+ 5. Scales operations
142
+ """
143
+
144
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
145
+ """Generate FinTech strategy."""
146
+ try:
147
+ # Market analysis
148
+ market = await self._analyze_fintech_market(query, context)
149
+
150
+ # Product development
151
+ product = await self._develop_fintech_product(market, context)
152
+
153
+ # Compliance strategy
154
+ compliance = await self._ensure_compliance(product, context)
155
+
156
+ # Risk management
157
+ risk = await self._manage_risk(compliance, context)
158
+
159
+ # Scale strategy
160
+ scale = await self._plan_fintech_scaling(risk, context)
161
+
162
+ return {
163
+ "success": scale["annual_revenue"] >= 1_000_000,
164
+ "market": market,
165
+ "product": product,
166
+ "compliance": compliance,
167
+ "risk": risk,
168
+ "scale": scale
169
+ }
170
+ except Exception as e:
171
+ logging.error(f"Error in FinTech strategy: {str(e)}")
172
+ return {"success": False, "error": str(e)}
173
+
174
+ class HealthTechStrategy(ReasoningStrategy):
175
+ """
176
+ HealthTech venture strategy that:
177
+ 1. Identifies healthcare opportunities
178
+ 2. Develops health solutions
179
+ 3. Ensures compliance
180
+ 4. Manages patient data
181
+ 5. Scales operations
182
+ """
183
+
184
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
185
+ """Generate HealthTech strategy."""
186
+ try:
187
+ # Market analysis
188
+ market = await self._analyze_healthtech_market(query, context)
189
+
190
+ # Solution development
191
+ solution = await self._develop_health_solution(market, context)
192
+
193
+ # Compliance strategy
194
+ compliance = await self._ensure_health_compliance(solution, context)
195
+
196
+ # Data strategy
197
+ data = await self._manage_health_data(compliance, context)
198
+
199
+ # Scale strategy
200
+ scale = await self._plan_healthtech_scaling(data, context)
201
+
202
+ return {
203
+ "success": scale["annual_revenue"] >= 1_000_000,
204
+ "market": market,
205
+ "solution": solution,
206
+ "compliance": compliance,
207
+ "data": data,
208
+ "scale": scale
209
+ }
210
+ except Exception as e:
211
+ logging.error(f"Error in HealthTech strategy: {str(e)}")
212
+ return {"success": False, "error": str(e)}
213
+
214
+ class EdTechStrategy(ReasoningStrategy):
215
+ """
216
+ EdTech venture strategy that:
217
+ 1. Identifies education opportunities
218
+ 2. Develops learning solutions
219
+ 3. Creates content strategy
220
+ 4. Manages user engagement
221
+ 5. Scales platform
222
+ """
223
+
224
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
225
+ """Generate EdTech strategy."""
226
+ try:
227
+ # Market analysis
228
+ market = await self._analyze_edtech_market(query, context)
229
+
230
+ # Solution development
231
+ solution = await self._develop_learning_solution(market, context)
232
+
233
+ # Content strategy
234
+ content = await self._create_content_strategy(solution, context)
235
+
236
+ # Engagement strategy
237
+ engagement = await self._manage_engagement(content, context)
238
+
239
+ # Scale strategy
240
+ scale = await self._plan_edtech_scaling(engagement, context)
241
+
242
+ return {
243
+ "success": scale["annual_revenue"] >= 1_000_000,
244
+ "market": market,
245
+ "solution": solution,
246
+ "content": content,
247
+ "engagement": engagement,
248
+ "scale": scale
249
+ }
250
+ except Exception as e:
251
+ logging.error(f"Error in EdTech strategy: {str(e)}")
252
+ return {"success": False, "error": str(e)}
253
+
254
+ class BlockchainStrategy(ReasoningStrategy):
255
+ """
256
+ Blockchain venture strategy that:
257
+ 1. Identifies blockchain opportunities
258
+ 2. Develops blockchain solutions
259
+ 3. Ensures security
260
+ 4. Manages tokenomics
261
+ 5. Scales network
262
+ """
263
+
264
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
265
+ """Generate blockchain strategy."""
266
+ try:
267
+ # Market analysis
268
+ market = await self._analyze_blockchain_market(query, context)
269
+
270
+ # Solution development
271
+ solution = await self._develop_blockchain_solution(market, context)
272
+
273
+ # Security strategy
274
+ security = await self._ensure_blockchain_security(solution, context)
275
+
276
+ # Tokenomics
277
+ tokenomics = await self._design_tokenomics(security, context)
278
+
279
+ # Scale strategy
280
+ scale = await self._plan_blockchain_scaling(tokenomics, context)
281
+
282
+ return {
283
+ "success": scale["annual_revenue"] >= 1_000_000,
284
+ "market": market,
285
+ "solution": solution,
286
+ "security": security,
287
+ "tokenomics": tokenomics,
288
+ "scale": scale
289
+ }
290
+ except Exception as e:
291
+ logging.error(f"Error in blockchain strategy: {str(e)}")
292
+ return {"success": False, "error": str(e)}
293
+
294
+ class AIMarketplaceStrategy(ReasoningStrategy):
295
+ """
296
+ AI marketplace venture strategy that:
297
+ 1. Creates AI model marketplace
298
+ 2. Manages model deployment
299
+ 3. Handles transactions
300
+ 4. Ensures quality
301
+ 5. Scales platform
302
+ """
303
+
304
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
305
+ """Generate AI marketplace strategy."""
306
+ try:
307
+ # Market analysis
308
+ market = await self._analyze_ai_marketplace(query, context)
309
+
310
+ # Platform development
311
+ platform = await self._develop_marketplace_platform(market, context)
312
+
313
+ # Quality strategy
314
+ quality = await self._ensure_model_quality(platform, context)
315
+
316
+ # Transaction system
317
+ transactions = await self._design_transaction_system(quality, context)
318
+
319
+ # Scale strategy
320
+ scale = await self._plan_marketplace_scaling(transactions, context)
321
+
322
+ return {
323
+ "success": scale["annual_revenue"] >= 1_000_000,
324
+ "market": market,
325
+ "platform": platform,
326
+ "quality": quality,
327
+ "transactions": transactions,
328
+ "scale": scale
329
+ }
330
+ except Exception as e:
331
+ logging.error(f"Error in AI marketplace strategy: {str(e)}")
332
+ return {"success": False, "error": str(e)}
requirements.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core dependencies
2
+ fastapi>=0.68.0
3
+ uvicorn>=0.15.0
4
+ gradio==4.44.1
5
+ pydantic>=2.0.0
6
+ python-dotenv>=0.19.0
7
+
8
+ # API and networking
9
+ httpx>=0.24.0
10
+ requests>=2.31.0
11
+ aiohttp>=3.8.0
12
+ urllib3>=2.0.7
13
+ websockets>=10.0
14
+
15
+ # ML and data processing
16
+ numpy>=1.24.0
17
+ pandas>=2.1.0
18
+ scikit-learn>=1.3.2
19
+ plotly>=5.18.0
20
+
21
+ # Model integration
22
+ huggingface-hub>=0.19.4
23
+ groq>=0.4.1
24
+
25
+ # Utilities
26
+ typing-extensions>=4.0.0
27
+ asyncio>=3.4.3
28
+ tqdm>=4.66.0
29
+ joblib==1.3.2
30
+
31
+ # Development
32
+ pytest>=7.0.0
33
+ black>=22.0.0
34
+ isort>=5.0.0
35
+ mypy>=1.0.0