Spaces:
Runtime error
Runtime error
"""Advanced monetization strategies for venture optimization.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class MonetizationModel: | |
"""Monetization model configuration.""" | |
name: str | |
type: str | |
pricing_tiers: List[Dict[str, Any]] | |
features: List[str] | |
constraints: List[str] | |
metrics: Dict[str, float] | |
class RevenueStream: | |
"""Revenue stream configuration.""" | |
name: str | |
type: str | |
volume: float | |
unit_economics: Dict[str, float] | |
growth_rate: float | |
churn_rate: float | |
class MonetizationOptimizer: | |
""" | |
Advanced monetization optimization that: | |
1. Designs pricing models | |
2. Optimizes revenue streams | |
3. Maximizes customer value | |
4. Reduces churn | |
5. Increases lifetime value | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize monetization optimizer.""" | |
self.config = config or {} | |
# Configure optimization parameters | |
self.min_revenue = self.config.get('min_revenue', 1_000_000) | |
self.min_margin = self.config.get('min_margin', 0.3) | |
self.max_churn = self.config.get('max_churn', 0.1) | |
self.target_ltv = self.config.get('target_ltv', 1000) | |
self.models: Dict[str, MonetizationModel] = {} | |
self.streams: Dict[str, RevenueStream] = {} | |
async def optimize_monetization(self, | |
venture_type: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize monetization strategy.""" | |
try: | |
# Design models | |
models = await self._design_models(venture_type, context) | |
# Optimize pricing | |
pricing = await self._optimize_pricing(models, context) | |
# Revenue optimization | |
revenue = await self._optimize_revenue(pricing, context) | |
# Value optimization | |
value = await self._optimize_value(revenue, context) | |
# Performance projections | |
projections = await self._project_performance(value, context) | |
return { | |
"success": projections["annual_revenue"] >= 1_000_000, | |
"models": models, | |
"pricing": pricing, | |
"revenue": revenue, | |
"value": value, | |
"projections": projections | |
} | |
except Exception as e: | |
logging.error(f"Error in monetization optimization: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _design_models(self, | |
venture_type: str, | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Design monetization models.""" | |
prompt = f""" | |
Design monetization models: | |
Venture: {venture_type} | |
Context: {json.dumps(context)} | |
Design models for: | |
1. Subscription tiers | |
2. Usage-based pricing | |
3. Hybrid models | |
4. Enterprise pricing | |
5. Marketplace fees | |
Format as: | |
[Model1] | |
Name: ... | |
Type: ... | |
Tiers: ... | |
Features: ... | |
Constraints: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_model_design(response["answer"]) | |
async def _optimize_pricing(self, | |
models: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize pricing strategy.""" | |
prompt = f""" | |
Optimize pricing strategy: | |
Models: {json.dumps(models)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Market positioning | |
2. Value perception | |
3. Competitive dynamics | |
4. Customer segments | |
5. Growth potential | |
Format as: | |
[Strategy1] | |
Model: ... | |
Positioning: ... | |
Value_Props: ... | |
Segments: ... | |
Growth: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_pricing_strategy(response["answer"]) | |
async def _optimize_revenue(self, | |
pricing: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize revenue streams.""" | |
prompt = f""" | |
Optimize revenue streams: | |
Pricing: {json.dumps(pricing)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Revenue mix | |
2. Growth drivers | |
3. Retention factors | |
4. Expansion potential | |
5. Risk mitigation | |
Format as: | |
[Stream1] | |
Type: ... | |
Drivers: ... | |
Retention: ... | |
Expansion: ... | |
Risks: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_revenue_optimization(response["answer"]) | |
async def _optimize_value(self, | |
revenue: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Optimize customer value.""" | |
prompt = f""" | |
Optimize customer value: | |
Revenue: {json.dumps(revenue)} | |
Context: {json.dumps(context)} | |
Optimize for: | |
1. Acquisition cost | |
2. Lifetime value | |
3. Churn reduction | |
4. Upsell potential | |
5. Network effects | |
Format as: | |
[Value1] | |
Metric: ... | |
Strategy: ... | |
Potential: ... | |
Actions: ... | |
Timeline: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_value_optimization(response["answer"]) | |
async def _project_performance(self, | |
value: Dict[str, Any], | |
context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Project monetization performance.""" | |
prompt = f""" | |
Project performance: | |
Value: {json.dumps(value)} | |
Context: {json.dumps(context)} | |
Project: | |
1. Revenue growth | |
2. Customer metrics | |
3. Unit economics | |
4. Profitability | |
5. Scale effects | |
Format as: | |
[Projections] | |
Revenue: ... | |
Metrics: ... | |
Economics: ... | |
Profit: ... | |
Scale: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_performance_projections(response["answer"]) | |
def _calculate_revenue_potential(self, model: MonetizationModel) -> float: | |
"""Calculate revenue potential for model.""" | |
base_potential = sum( | |
tier.get("price", 0) * tier.get("volume", 0) | |
for tier in model.pricing_tiers | |
) | |
growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100) | |
retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100) | |
return base_potential * growth_factor * retention_factor | |
def _calculate_customer_ltv(self, stream: RevenueStream) -> float: | |
"""Calculate customer lifetime value.""" | |
monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0) | |
churn_rate = stream.churn_rate / 100 | |
discount_rate = 0.1 # 10% annual discount rate | |
if churn_rate > 0: | |
ltv = monthly_revenue / churn_rate | |
else: | |
ltv = monthly_revenue * 12 # Assume 1 year if no churn | |
return ltv / (1 + discount_rate) | |
def get_monetization_metrics(self) -> Dict[str, Any]: | |
"""Get comprehensive monetization metrics.""" | |
return { | |
"model_metrics": { | |
model.name: { | |
"revenue_potential": self._calculate_revenue_potential(model), | |
"tier_count": len(model.pricing_tiers), | |
"feature_count": len(model.features), | |
"constraint_count": len(model.constraints) | |
} | |
for model in self.models.values() | |
}, | |
"stream_metrics": { | |
stream.name: { | |
"monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0), | |
"ltv": self._calculate_customer_ltv(stream), | |
"growth_rate": stream.growth_rate, | |
"churn_rate": stream.churn_rate | |
} | |
for stream in self.streams.values() | |
}, | |
"aggregate_metrics": { | |
"total_revenue_potential": sum( | |
self._calculate_revenue_potential(model) | |
for model in self.models.values() | |
), | |
"average_ltv": np.mean([ | |
self._calculate_customer_ltv(stream) | |
for stream in self.streams.values() | |
]) if self.streams else 0, | |
"weighted_growth_rate": np.average( | |
[stream.growth_rate for stream in self.streams.values()], | |
weights=[stream.volume for stream in self.streams.values()] | |
) if self.streams else 0 | |
} | |
} | |
class MonetizationStrategy(ReasoningStrategy): | |
""" | |
Advanced monetization strategy that: | |
1. Designs optimal pricing models | |
2. Optimizes revenue streams | |
3. Maximizes customer lifetime value | |
4. Reduces churn | |
5. Increases profitability | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize monetization strategy.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Initialize optimizer with shared config | |
optimizer_config = { | |
'min_revenue': self.config.get('min_revenue', 1_000_000), | |
'min_margin': self.config.get('min_margin', 0.3), | |
'max_churn': self.config.get('max_churn', 0.1), | |
'target_ltv': self.config.get('target_ltv', 1000) | |
} | |
self.optimizer = MonetizationOptimizer(optimizer_config) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Generate monetization strategy based on query and context. | |
Args: | |
query: The monetization query | |
context: Additional context and parameters | |
Returns: | |
Dict containing monetization strategy and confidence scores | |
""" | |
try: | |
# Extract venture type | |
venture_type = self._extract_venture_type(query, context) | |
# Optimize monetization | |
optimization_result = await self.optimizer.optimize_monetization( | |
venture_type=venture_type, | |
context=context | |
) | |
# Format results | |
formatted_result = self._format_strategy(optimization_result) | |
return { | |
'answer': formatted_result, | |
'confidence': self._calculate_confidence(optimization_result), | |
'optimization': optimization_result | |
} | |
except Exception as e: | |
logging.error(f"Monetization strategy generation failed: {str(e)}") | |
return { | |
'error': f"Monetization strategy generation failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str: | |
"""Extract venture type from query and context.""" | |
# Use context if available | |
if 'venture_type' in context: | |
return context['venture_type'] | |
# Simple keyword matching | |
query_lower = query.lower() | |
if any(term in query_lower for term in ['ai', 'ml', 'model']): | |
return 'ai_startup' | |
elif any(term in query_lower for term in ['saas', 'software']): | |
return 'saas' | |
elif any(term in query_lower for term in ['api', 'service']): | |
return 'api_service' | |
elif any(term in query_lower for term in ['data', 'analytics']): | |
return 'data_analytics' | |
# Default to SaaS if unclear | |
return 'saas' | |
def _calculate_confidence(self, result: Dict[str, Any]) -> float: | |
"""Calculate confidence score based on optimization quality.""" | |
# Base confidence | |
confidence = 0.5 | |
# Adjust based on optimization completeness | |
if result.get('models'): | |
confidence += 0.1 | |
if result.get('pricing'): | |
confidence += 0.1 | |
if result.get('revenue'): | |
confidence += 0.1 | |
if result.get('value'): | |
confidence += 0.1 | |
# Adjust based on projected performance | |
performance = result.get('performance', {}) | |
if performance.get('roi', 0) > 2.0: | |
confidence += 0.1 | |
if performance.get('ltv', 0) > 1000: | |
confidence += 0.1 | |
return min(confidence, 1.0) | |
def _format_strategy(self, result: Dict[str, Any]) -> str: | |
"""Format monetization strategy into readable text.""" | |
sections = [] | |
# Monetization models | |
if 'models' in result: | |
models = result['models'] | |
sections.append("Monetization Models:") | |
for model in models: | |
sections.append(f"- {model['name']}: {model['type']}") | |
if 'pricing_tiers' in model: | |
sections.append(" Pricing Tiers:") | |
for tier in model['pricing_tiers']: | |
sections.append(f" * {tier['name']}: ${tier['price']}/mo") | |
# Revenue optimization | |
if 'revenue' in result: | |
revenue = result['revenue'] | |
sections.append("\nRevenue Optimization:") | |
for stream, details in revenue.items(): | |
sections.append(f"- {stream.replace('_', ' ').title()}:") | |
sections.append(f" * Projected Revenue: ${details['projected_revenue']:,.2f}") | |
sections.append(f" * Growth Rate: {details['growth_rate']*100:.1f}%") | |
# Customer value optimization | |
if 'value' in result: | |
value = result['value'] | |
sections.append("\nCustomer Value Optimization:") | |
sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}") | |
sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}") | |
sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%") | |
# Performance projections | |
if 'performance' in result: | |
perf = result['performance'] | |
sections.append("\nPerformance Projections:") | |
sections.append(f"- ROI: {perf['roi']*100:.1f}%") | |
sections.append(f"- Payback Period: {perf['payback_months']:.1f} months") | |
sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}") | |
return "\n".join(sections) | |