File size: 15,884 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
"""Advanced monetization strategies for venture optimization."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

@dataclass
class MonetizationModel:
    """Monetization model configuration."""
    name: str
    type: str
    pricing_tiers: List[Dict[str, Any]]
    features: List[str]
    constraints: List[str]
    metrics: Dict[str, float]

@dataclass
class RevenueStream:
    """Revenue stream configuration."""
    name: str
    type: str
    volume: float
    unit_economics: Dict[str, float]
    growth_rate: float
    churn_rate: float

class MonetizationOptimizer:
    """
    Advanced monetization optimization that:
    1. Designs pricing models
    2. Optimizes revenue streams
    3. Maximizes customer value
    4. Reduces churn
    5. Increases lifetime value
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize monetization optimizer."""
        self.config = config or {}
        
        # Configure optimization parameters
        self.min_revenue = self.config.get('min_revenue', 1_000_000)
        self.min_margin = self.config.get('min_margin', 0.3)
        self.max_churn = self.config.get('max_churn', 0.1)
        self.target_ltv = self.config.get('target_ltv', 1000)
        
        self.models: Dict[str, MonetizationModel] = {}
        self.streams: Dict[str, RevenueStream] = {}
        
    async def optimize_monetization(self,
                                  venture_type: str,
                                  context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize monetization strategy."""
        try:
            # Design models
            models = await self._design_models(venture_type, context)
            
            # Optimize pricing
            pricing = await self._optimize_pricing(models, context)
            
            # Revenue optimization
            revenue = await self._optimize_revenue(pricing, context)
            
            # Value optimization
            value = await self._optimize_value(revenue, context)
            
            # Performance projections
            projections = await self._project_performance(value, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "models": models,
                "pricing": pricing,
                "revenue": revenue,
                "value": value,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in monetization optimization: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _design_models(self,
                           venture_type: str,
                           context: Dict[str, Any]) -> Dict[str, Any]:
        """Design monetization models."""
        prompt = f"""
        Design monetization models:
        Venture: {venture_type}
        Context: {json.dumps(context)}
        
        Design models for:
        1. Subscription tiers
        2. Usage-based pricing
        3. Hybrid models
        4. Enterprise pricing
        5. Marketplace fees
        
        Format as:
        [Model1]
        Name: ...
        Type: ...
        Tiers: ...
        Features: ...
        Constraints: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_model_design(response["answer"])

    async def _optimize_pricing(self,
                              models: Dict[str, Any],
                              context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize pricing strategy."""
        prompt = f"""
        Optimize pricing strategy:
        Models: {json.dumps(models)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Market positioning
        2. Value perception
        3. Competitive dynamics
        4. Customer segments
        5. Growth potential
        
        Format as:
        [Strategy1]
        Model: ...
        Positioning: ...
        Value_Props: ...
        Segments: ...
        Growth: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_pricing_strategy(response["answer"])

    async def _optimize_revenue(self,
                              pricing: Dict[str, Any],
                              context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize revenue streams."""
        prompt = f"""
        Optimize revenue streams:
        Pricing: {json.dumps(pricing)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Revenue mix
        2. Growth drivers
        3. Retention factors
        4. Expansion potential
        5. Risk mitigation
        
        Format as:
        [Stream1]
        Type: ...
        Drivers: ...
        Retention: ...
        Expansion: ...
        Risks: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_revenue_optimization(response["answer"])

    async def _optimize_value(self,
                            revenue: Dict[str, Any],
                            context: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize customer value."""
        prompt = f"""
        Optimize customer value:
        Revenue: {json.dumps(revenue)}
        Context: {json.dumps(context)}
        
        Optimize for:
        1. Acquisition cost
        2. Lifetime value
        3. Churn reduction
        4. Upsell potential
        5. Network effects
        
        Format as:
        [Value1]
        Metric: ...
        Strategy: ...
        Potential: ...
        Actions: ...
        Timeline: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_value_optimization(response["answer"])

    async def _project_performance(self,
                                 value: Dict[str, Any],
                                 context: Dict[str, Any]) -> Dict[str, Any]:
        """Project monetization performance."""
        prompt = f"""
        Project performance:
        Value: {json.dumps(value)}
        Context: {json.dumps(context)}
        
        Project:
        1. Revenue growth
        2. Customer metrics
        3. Unit economics
        4. Profitability
        5. Scale effects
        
        Format as:
        [Projections]
        Revenue: ...
        Metrics: ...
        Economics: ...
        Profit: ...
        Scale: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_performance_projections(response["answer"])

    def _calculate_revenue_potential(self, model: MonetizationModel) -> float:
        """Calculate revenue potential for model."""
        base_potential = sum(
            tier.get("price", 0) * tier.get("volume", 0)
            for tier in model.pricing_tiers
        )
        
        growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100)
        retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100)
        
        return base_potential * growth_factor * retention_factor

    def _calculate_customer_ltv(self, stream: RevenueStream) -> float:
        """Calculate customer lifetime value."""
        monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0)
        churn_rate = stream.churn_rate / 100
        discount_rate = 0.1  # 10% annual discount rate
        
        if churn_rate > 0:
            ltv = monthly_revenue / churn_rate
        else:
            ltv = monthly_revenue * 12  # Assume 1 year if no churn
            
        return ltv / (1 + discount_rate)

    def get_monetization_metrics(self) -> Dict[str, Any]:
        """Get comprehensive monetization metrics."""
        return {
            "model_metrics": {
                model.name: {
                    "revenue_potential": self._calculate_revenue_potential(model),
                    "tier_count": len(model.pricing_tiers),
                    "feature_count": len(model.features),
                    "constraint_count": len(model.constraints)
                }
                for model in self.models.values()
            },
            "stream_metrics": {
                stream.name: {
                    "monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0),
                    "ltv": self._calculate_customer_ltv(stream),
                    "growth_rate": stream.growth_rate,
                    "churn_rate": stream.churn_rate
                }
                for stream in self.streams.values()
            },
            "aggregate_metrics": {
                "total_revenue_potential": sum(
                    self._calculate_revenue_potential(model)
                    for model in self.models.values()
                ),
                "average_ltv": np.mean([
                    self._calculate_customer_ltv(stream)
                    for stream in self.streams.values()
                ]) if self.streams else 0,
                "weighted_growth_rate": np.average(
                    [stream.growth_rate for stream in self.streams.values()],
                    weights=[stream.volume for stream in self.streams.values()]
                ) if self.streams else 0
            }
        }

class MonetizationStrategy(ReasoningStrategy):
    """
    Advanced monetization strategy that:
    1. Designs optimal pricing models
    2. Optimizes revenue streams
    3. Maximizes customer lifetime value
    4. Reduces churn
    5. Increases profitability
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize monetization strategy."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Initialize optimizer with shared config
        optimizer_config = {
            'min_revenue': self.config.get('min_revenue', 1_000_000),
            'min_margin': self.config.get('min_margin', 0.3),
            'max_churn': self.config.get('max_churn', 0.1),
            'target_ltv': self.config.get('target_ltv', 1000)
        }
        self.optimizer = MonetizationOptimizer(optimizer_config)
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate monetization strategy based on query and context.
        
        Args:
            query: The monetization query
            context: Additional context and parameters
            
        Returns:
            Dict containing monetization strategy and confidence scores
        """
        try:
            # Extract venture type
            venture_type = self._extract_venture_type(query, context)
            
            # Optimize monetization
            optimization_result = await self.optimizer.optimize_monetization(
                venture_type=venture_type,
                context=context
            )
            
            # Format results
            formatted_result = self._format_strategy(optimization_result)
            
            return {
                'answer': formatted_result,
                'confidence': self._calculate_confidence(optimization_result),
                'optimization': optimization_result
            }
            
        except Exception as e:
            logging.error(f"Monetization strategy generation failed: {str(e)}")
            return {
                'error': f"Monetization strategy generation failed: {str(e)}",
                'confidence': 0.0
            }
    
    def _extract_venture_type(self, query: str, context: Dict[str, Any]) -> str:
        """Extract venture type from query and context."""
        # Use context if available
        if 'venture_type' in context:
            return context['venture_type']
        
        # Simple keyword matching
        query_lower = query.lower()
        if any(term in query_lower for term in ['ai', 'ml', 'model']):
            return 'ai_startup'
        elif any(term in query_lower for term in ['saas', 'software']):
            return 'saas'
        elif any(term in query_lower for term in ['api', 'service']):
            return 'api_service'
        elif any(term in query_lower for term in ['data', 'analytics']):
            return 'data_analytics'
        
        # Default to SaaS if unclear
        return 'saas'
    
    def _calculate_confidence(self, result: Dict[str, Any]) -> float:
        """Calculate confidence score based on optimization quality."""
        # Base confidence
        confidence = 0.5
        
        # Adjust based on optimization completeness
        if result.get('models'):
            confidence += 0.1
        if result.get('pricing'):
            confidence += 0.1
        if result.get('revenue'):
            confidence += 0.1
        if result.get('value'):
            confidence += 0.1
            
        # Adjust based on projected performance
        performance = result.get('performance', {})
        if performance.get('roi', 0) > 2.0:
            confidence += 0.1
        if performance.get('ltv', 0) > 1000:
            confidence += 0.1
            
        return min(confidence, 1.0)
    
    def _format_strategy(self, result: Dict[str, Any]) -> str:
        """Format monetization strategy into readable text."""
        sections = []
        
        # Monetization models
        if 'models' in result:
            models = result['models']
            sections.append("Monetization Models:")
            for model in models:
                sections.append(f"- {model['name']}: {model['type']}")
                if 'pricing_tiers' in model:
                    sections.append("  Pricing Tiers:")
                    for tier in model['pricing_tiers']:
                        sections.append(f"  * {tier['name']}: ${tier['price']}/mo")
        
        # Revenue optimization
        if 'revenue' in result:
            revenue = result['revenue']
            sections.append("\nRevenue Optimization:")
            for stream, details in revenue.items():
                sections.append(f"- {stream.replace('_', ' ').title()}:")
                sections.append(f"  * Projected Revenue: ${details['projected_revenue']:,.2f}")
                sections.append(f"  * Growth Rate: {details['growth_rate']*100:.1f}%")
        
        # Customer value optimization
        if 'value' in result:
            value = result['value']
            sections.append("\nCustomer Value Optimization:")
            sections.append(f"- Customer Acquisition Cost: ${value['cac']:,.2f}")
            sections.append(f"- Lifetime Value: ${value['ltv']:,.2f}")
            sections.append(f"- Churn Rate: {value['churn_rate']*100:.1f}%")
        
        # Performance projections
        if 'performance' in result:
            perf = result['performance']
            sections.append("\nPerformance Projections:")
            sections.append(f"- ROI: {perf['roi']*100:.1f}%")
            sections.append(f"- Payback Period: {perf['payback_months']:.1f} months")
            sections.append(f"- Break-even Point: ${perf['breakeven']:,.2f}")
        
        return "\n".join(sections)