Spaces:
Runtime error
Runtime error
"""Analogical reasoning implementation with advanced pattern matching and transfer learning.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Tuple, Callable | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class AnalogicalLevel(Enum): | |
"""Levels of analogical similarity.""" | |
SURFACE = "surface" | |
STRUCTURAL = "structural" | |
SEMANTIC = "semantic" | |
FUNCTIONAL = "functional" | |
CAUSAL = "causal" | |
ABSTRACT = "abstract" | |
class MappingType(Enum): | |
"""Types of analogical mappings.""" | |
DIRECT = "direct" | |
TRANSFORMED = "transformed" | |
COMPOSITE = "composite" | |
ABSTRACT = "abstract" | |
METAPHORICAL = "metaphorical" | |
HYBRID = "hybrid" | |
class AnalogicalPattern: | |
"""Represents a pattern for analogical matching.""" | |
id: str | |
level: AnalogicalLevel | |
features: Dict[str, Any] | |
relations: List[Tuple[str, str, str]] # (entity1, relation, entity2) | |
constraints: List[str] | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class AnalogicalMapping: | |
"""Represents a mapping between source and target domains.""" | |
id: str | |
type: MappingType | |
source_elements: Dict[str, Any] | |
target_elements: Dict[str, Any] | |
correspondences: List[Tuple[str, str, float]] # (source, target, strength) | |
transformations: List[Dict[str, Any]] | |
confidence: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class AnalogicalSolution: | |
"""Represents a solution derived through analogical reasoning.""" | |
id: str | |
source_analogy: str | |
mapping: AnalogicalMapping | |
adaptation: Dict[str, Any] | |
inference: Dict[str, Any] | |
confidence: float | |
validation: Dict[str, Any] | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
class AnalogicalReasoning(ReasoningStrategy): | |
""" | |
Advanced Analogical Reasoning implementation with: | |
- Multi-level pattern matching | |
- Sophisticated similarity metrics | |
- Transfer learning capabilities | |
- Dynamic adaptation mechanisms | |
- Quality assessment | |
- Learning from experience | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize analogical reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Analogical reasoning specific parameters | |
self.min_similarity = self.config.get('min_similarity', 0.6) | |
self.max_candidates = self.config.get('max_candidates', 5) | |
self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7) | |
# Knowledge base | |
self.patterns: Dict[str, AnalogicalPattern] = {} | |
self.mappings: Dict[str, AnalogicalMapping] = {} | |
self.solutions: Dict[str, AnalogicalSolution] = {} | |
# Learning components | |
self.pattern_weights: Dict[str, float] = defaultdict(float) | |
self.success_history: List[Dict[str, Any]] = [] | |
self.adaptation_history: List[Dict[str, Any]] = [] | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
"""Main reasoning method implementing analogical reasoning.""" | |
try: | |
# Extract patterns from query | |
patterns = await self._extract_patterns(query, context) | |
# Find analogical matches | |
matches = await self._find_matches(patterns, context) | |
# Create and evaluate mappings | |
mappings = await self._create_mappings(matches, context) | |
# Generate and adapt solutions | |
solutions = await self._generate_solutions(mappings, context) | |
# Select best solution | |
best_solution = await self._select_best_solution(solutions, context) | |
# Learn from experience | |
self._update_knowledge(patterns, mappings, best_solution) | |
return { | |
"success": True, | |
"answer": best_solution.inference["conclusion"], | |
"confidence": best_solution.confidence, | |
"analogy": { | |
"source": best_solution.source_analogy, | |
"mapping": self._mapping_to_dict(best_solution.mapping), | |
"adaptation": best_solution.adaptation | |
}, | |
"reasoning_trace": best_solution.metadata.get("reasoning_trace", []), | |
"meta_insights": best_solution.metadata.get("meta_insights", []) | |
} | |
except Exception as e: | |
logging.error(f"Error in analogical reasoning: {str(e)}") | |
return {"success": False, "error": str(e)} | |
async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]: | |
"""Extract patterns from query for analogical matching.""" | |
prompt = f""" | |
Extract analogical patterns from query: | |
Query: {query} | |
Context: {json.dumps(context)} | |
For each pattern level: | |
1. Surface features | |
2. Structural relations | |
3. Semantic concepts | |
4. Functional roles | |
5. Causal relationships | |
6. Abstract principles | |
Format as: | |
[P1] | |
Level: ... | |
Features: ... | |
Relations: ... | |
Constraints: ... | |
[P2] | |
... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_patterns(response["answer"]) | |
async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Find matching patterns in knowledge base.""" | |
prompt = f""" | |
Find analogical matches: | |
Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])} | |
Context: {json.dumps(context)} | |
For each match provide: | |
1. Source domain | |
2. Similarity assessment | |
3. Key correspondences | |
4. Transfer potential | |
Format as: | |
[M1] | |
Source: ... | |
Similarity: ... | |
Correspondences: ... | |
Transfer: ... | |
[M2] | |
... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_matches(response["answer"]) | |
async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]: | |
"""Create mappings between source and target domains.""" | |
prompt = f""" | |
Create analogical mappings: | |
Matches: {json.dumps(matches)} | |
Context: {json.dumps(context)} | |
For each mapping specify: | |
1. [Type]: {" | ".join([t.value for t in MappingType])} | |
2. [Elements]: Source and target elements | |
3. [Correspondences]: Element mappings | |
4. [Transformations]: Required adaptations | |
5. [Confidence]: Mapping strength | |
Format as: | |
[Map1] | |
Type: ... | |
Elements: ... | |
Correspondences: ... | |
Transformations: ... | |
Confidence: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_mappings(response["answer"]) | |
async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]: | |
"""Generate solutions through analogical transfer.""" | |
prompt = f""" | |
Generate analogical solutions: | |
Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])} | |
Context: {json.dumps(context)} | |
For each solution provide: | |
1. Analogical inference | |
2. Required adaptations | |
3. Validation criteria | |
4. Confidence assessment | |
5. Reasoning trace | |
Format as: | |
[S1] | |
Inference: ... | |
Adaptation: ... | |
Validation: ... | |
Confidence: ... | |
Trace: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_solutions(response["answer"], mappings) | |
async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution: | |
"""Select the best solution based on multiple criteria.""" | |
prompt = f""" | |
Evaluate and select best solution: | |
Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])} | |
Context: {json.dumps(context)} | |
Evaluate based on: | |
1. Inference quality | |
2. Adaptation feasibility | |
3. Validation strength | |
4. Overall confidence | |
Format as: | |
[Evaluation] | |
Rankings: ... | |
Rationale: ... | |
Selection: ... | |
Confidence: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
selection = self._parse_selection(response["answer"]) | |
# Find selected solution | |
selected = max(solutions, key=lambda s: s.confidence) | |
for solution in solutions: | |
if solution.id == selection.get("selected_id"): | |
selected = solution | |
break | |
return selected | |
def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution): | |
"""Update knowledge base with new patterns and successful mappings.""" | |
# Update patterns | |
for pattern in patterns: | |
if pattern.id not in self.patterns: | |
self.patterns[pattern.id] = pattern | |
self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence | |
# Update mappings | |
if solution.mapping.id not in self.mappings: | |
self.mappings[solution.mapping.id] = solution.mapping | |
# Record solution | |
self.solutions[solution.id] = solution | |
# Update history | |
self.success_history.append({ | |
"timestamp": datetime.now().isoformat(), | |
"solution_id": solution.id, | |
"confidence": solution.confidence, | |
"patterns": [p.id for p in patterns], | |
"mapping_type": solution.mapping.type.value | |
}) | |
# Update adaptation history | |
self.adaptation_history.append({ | |
"timestamp": datetime.now().isoformat(), | |
"solution_id": solution.id, | |
"adaptations": solution.adaptation, | |
"success": solution.confidence >= self.adaptation_threshold | |
}) | |
def _parse_patterns(self, response: str) -> List[AnalogicalPattern]: | |
"""Parse patterns from response.""" | |
patterns = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[P'): | |
if current: | |
patterns.append(current) | |
current = None | |
elif line.startswith('Level:'): | |
level_str = line[6:].strip().lower() | |
try: | |
level = AnalogicalLevel(level_str) | |
current = AnalogicalPattern( | |
id=f"pattern_{len(patterns)}", | |
level=level, | |
features={}, | |
relations=[], | |
constraints=[], | |
metadata={} | |
) | |
except ValueError: | |
logging.warning(f"Invalid analogical level: {level_str}") | |
elif current: | |
if line.startswith('Features:'): | |
try: | |
current.features = json.loads(line[9:].strip()) | |
except: | |
current.features = {"raw": line[9:].strip()} | |
elif line.startswith('Relations:'): | |
relations = [r.strip() for r in line[10:].split(',')] | |
current.relations = [(r.split()[0], r.split()[1], r.split()[2]) | |
for r in relations if len(r.split()) >= 3] | |
elif line.startswith('Constraints:'): | |
current.constraints = [c.strip() for c in line[12:].split(',')] | |
if current: | |
patterns.append(current) | |
return patterns | |
def _parse_matches(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse matches from response.""" | |
matches = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[M'): | |
if current: | |
matches.append(current) | |
current = { | |
"source": "", | |
"similarity": 0.0, | |
"correspondences": [], | |
"transfer": [] | |
} | |
elif current: | |
if line.startswith('Source:'): | |
current["source"] = line[7:].strip() | |
elif line.startswith('Similarity:'): | |
try: | |
current["similarity"] = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Correspondences:'): | |
current["correspondences"] = [c.strip() for c in line[16:].split(',')] | |
elif line.startswith('Transfer:'): | |
current["transfer"] = [t.strip() for t in line[9:].split(',')] | |
if current: | |
matches.append(current) | |
return matches | |
def _parse_mappings(self, response: str) -> List[AnalogicalMapping]: | |
"""Parse mappings from response.""" | |
mappings = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[Map'): | |
if current: | |
mappings.append(current) | |
current = None | |
elif line.startswith('Type:'): | |
type_str = line[5:].strip().lower() | |
try: | |
mapping_type = MappingType(type_str) | |
current = AnalogicalMapping( | |
id=f"mapping_{len(mappings)}", | |
type=mapping_type, | |
source_elements={}, | |
target_elements={}, | |
correspondences=[], | |
transformations=[], | |
confidence=0.0, | |
metadata={} | |
) | |
except ValueError: | |
logging.warning(f"Invalid mapping type: {type_str}") | |
elif current: | |
if line.startswith('Elements:'): | |
try: | |
elements = json.loads(line[9:].strip()) | |
current.source_elements = elements.get("source", {}) | |
current.target_elements = elements.get("target", {}) | |
except: | |
pass | |
elif line.startswith('Correspondences:'): | |
pairs = [c.strip() for c in line[16:].split(',')] | |
for pair in pairs: | |
parts = pair.split(':') | |
if len(parts) >= 2: | |
source = parts[0].strip() | |
target = parts[1].strip() | |
strength = float(parts[2]) if len(parts) > 2 else 1.0 | |
current.correspondences.append((source, target, strength)) | |
elif line.startswith('Transformations:'): | |
try: | |
current.transformations = json.loads(line[16:].strip()) | |
except: | |
current.transformations = [{"raw": line[16:].strip()}] | |
elif line.startswith('Confidence:'): | |
try: | |
current.confidence = float(line[11:].strip()) | |
except: | |
pass | |
if current: | |
mappings.append(current) | |
return mappings | |
def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]: | |
"""Parse solutions from response.""" | |
solutions = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[S'): | |
if current: | |
solutions.append(current) | |
current = None | |
mapping_idx = len(solutions) | |
if mapping_idx < len(mappings): | |
current = AnalogicalSolution( | |
id=f"solution_{len(solutions)}", | |
source_analogy="", | |
mapping=mappings[mapping_idx], | |
adaptation={}, | |
inference={}, | |
confidence=0.0, | |
validation={}, | |
metadata={} | |
) | |
elif current: | |
if line.startswith('Inference:'): | |
try: | |
current.inference = json.loads(line[10:].strip()) | |
except: | |
current.inference = {"conclusion": line[10:].strip()} | |
elif line.startswith('Adaptation:'): | |
try: | |
current.adaptation = json.loads(line[11:].strip()) | |
except: | |
current.adaptation = {"steps": [line[11:].strip()]} | |
elif line.startswith('Validation:'): | |
try: | |
current.validation = json.loads(line[11:].strip()) | |
except: | |
current.validation = {"criteria": [line[11:].strip()]} | |
elif line.startswith('Confidence:'): | |
try: | |
current.confidence = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Trace:'): | |
current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')] | |
if current: | |
solutions.append(current) | |
return solutions | |
def _parse_selection(self, response: str) -> Dict[str, Any]: | |
"""Parse solution selection from response.""" | |
selection = { | |
"selected_id": None, | |
"confidence": 0.0, | |
"rationale": [] | |
} | |
for line in response.split('\n'): | |
line = line.strip() | |
if line.startswith('Selection:'): | |
selection["selected_id"] = line[10:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
selection["confidence"] = float(line[11:].strip()) | |
except: | |
pass | |
elif line.startswith('Rationale:'): | |
selection["rationale"] = [r.strip() for r in line[10:].split(',')] | |
return selection | |
def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]: | |
"""Convert pattern to dictionary for serialization.""" | |
return { | |
"id": pattern.id, | |
"level": pattern.level.value, | |
"features": pattern.features, | |
"relations": pattern.relations, | |
"constraints": pattern.constraints, | |
"metadata": pattern.metadata | |
} | |
def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]: | |
"""Convert mapping to dictionary for serialization.""" | |
return { | |
"id": mapping.id, | |
"type": mapping.type.value, | |
"source_elements": mapping.source_elements, | |
"target_elements": mapping.target_elements, | |
"correspondences": mapping.correspondences, | |
"transformations": mapping.transformations, | |
"confidence": mapping.confidence, | |
"metadata": mapping.metadata | |
} | |
def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]: | |
"""Convert solution to dictionary for serialization.""" | |
return { | |
"id": solution.id, | |
"source_analogy": solution.source_analogy, | |
"mapping": self._mapping_to_dict(solution.mapping), | |
"adaptation": solution.adaptation, | |
"inference": solution.inference, | |
"confidence": solution.confidence, | |
"validation": solution.validation, | |
"metadata": solution.metadata | |
} | |
def get_pattern_statistics(self) -> Dict[str, Any]: | |
"""Get statistics about pattern usage and effectiveness.""" | |
return { | |
"total_patterns": len(self.patterns), | |
"level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}), | |
"average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0, | |
"pattern_weights": dict(self.pattern_weights) | |
} | |
def get_mapping_statistics(self) -> Dict[str, Any]: | |
"""Get statistics about mapping effectiveness.""" | |
return { | |
"total_mappings": len(self.mappings), | |
"type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}), | |
"average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0, | |
"transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()}) | |
} | |
def get_solution_statistics(self) -> Dict[str, Any]: | |
"""Get statistics about solution quality.""" | |
return { | |
"total_solutions": len(self.solutions), | |
"average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0, | |
"adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0 | |
} | |
def clear_knowledge_base(self): | |
"""Clear the knowledge base.""" | |
self.patterns.clear() | |
self.mappings.clear() | |
self.solutions.clear() | |
self.pattern_weights.clear() | |
self.success_history.clear() | |
self.adaptation_history.clear() | |