File size: 23,363 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
"""Analogical reasoning implementation with advanced pattern matching and transfer learning."""

import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

class AnalogicalLevel(Enum):
    """Levels of analogical similarity."""
    SURFACE = "surface"
    STRUCTURAL = "structural"
    SEMANTIC = "semantic"
    FUNCTIONAL = "functional"
    CAUSAL = "causal"
    ABSTRACT = "abstract"

class MappingType(Enum):
    """Types of analogical mappings."""
    DIRECT = "direct"
    TRANSFORMED = "transformed"
    COMPOSITE = "composite"
    ABSTRACT = "abstract"
    METAPHORICAL = "metaphorical"
    HYBRID = "hybrid"

@dataclass
class AnalogicalPattern:
    """Represents a pattern for analogical matching."""
    id: str
    level: AnalogicalLevel
    features: Dict[str, Any]
    relations: List[Tuple[str, str, str]]  # (entity1, relation, entity2)
    constraints: List[str]
    metadata: Dict[str, Any] = field(default_factory=dict)

@dataclass
class AnalogicalMapping:
    """Represents a mapping between source and target domains."""
    id: str
    type: MappingType
    source_elements: Dict[str, Any]
    target_elements: Dict[str, Any]
    correspondences: List[Tuple[str, str, float]]  # (source, target, strength)
    transformations: List[Dict[str, Any]]
    confidence: float
    metadata: Dict[str, Any] = field(default_factory=dict)

@dataclass
class AnalogicalSolution:
    """Represents a solution derived through analogical reasoning."""
    id: str
    source_analogy: str
    mapping: AnalogicalMapping
    adaptation: Dict[str, Any]
    inference: Dict[str, Any]
    confidence: float
    validation: Dict[str, Any]
    metadata: Dict[str, Any] = field(default_factory=dict)

class AnalogicalReasoning(ReasoningStrategy):
    """
    Advanced Analogical Reasoning implementation with:
    - Multi-level pattern matching
    - Sophisticated similarity metrics
    - Transfer learning capabilities
    - Dynamic adaptation mechanisms
    - Quality assessment
    - Learning from experience
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize analogical reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Analogical reasoning specific parameters
        self.min_similarity = self.config.get('min_similarity', 0.6)
        self.max_candidates = self.config.get('max_candidates', 5)
        self.adaptation_threshold = self.config.get('adaptation_threshold', 0.7)
        
        # Knowledge base
        self.patterns: Dict[str, AnalogicalPattern] = {}
        self.mappings: Dict[str, AnalogicalMapping] = {}
        self.solutions: Dict[str, AnalogicalSolution] = {}
        
        # Learning components
        self.pattern_weights: Dict[str, float] = defaultdict(float)
        self.success_history: List[Dict[str, Any]] = []
        self.adaptation_history: List[Dict[str, Any]] = []
        
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Main reasoning method implementing analogical reasoning."""
        try:
            # Extract patterns from query
            patterns = await self._extract_patterns(query, context)
            
            # Find analogical matches
            matches = await self._find_matches(patterns, context)
            
            # Create and evaluate mappings
            mappings = await self._create_mappings(matches, context)
            
            # Generate and adapt solutions
            solutions = await self._generate_solutions(mappings, context)
            
            # Select best solution
            best_solution = await self._select_best_solution(solutions, context)
            
            # Learn from experience
            self._update_knowledge(patterns, mappings, best_solution)
            
            return {
                "success": True,
                "answer": best_solution.inference["conclusion"],
                "confidence": best_solution.confidence,
                "analogy": {
                    "source": best_solution.source_analogy,
                    "mapping": self._mapping_to_dict(best_solution.mapping),
                    "adaptation": best_solution.adaptation
                },
                "reasoning_trace": best_solution.metadata.get("reasoning_trace", []),
                "meta_insights": best_solution.metadata.get("meta_insights", [])
            }
        except Exception as e:
            logging.error(f"Error in analogical reasoning: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]:
        """Extract patterns from query for analogical matching."""
        prompt = f"""
        Extract analogical patterns from query:
        Query: {query}
        Context: {json.dumps(context)}
        
        For each pattern level:
        1. Surface features
        2. Structural relations
        3. Semantic concepts
        4. Functional roles
        5. Causal relationships
        6. Abstract principles
        
        Format as:
        [P1]
        Level: ...
        Features: ...
        Relations: ...
        Constraints: ...
        
        [P2]
        ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_patterns(response["answer"])

    async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Find matching patterns in knowledge base."""
        prompt = f"""
        Find analogical matches:
        Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])}
        Context: {json.dumps(context)}
        
        For each match provide:
        1. Source domain
        2. Similarity assessment
        3. Key correspondences
        4. Transfer potential
        
        Format as:
        [M1]
        Source: ...
        Similarity: ...
        Correspondences: ...
        Transfer: ...
        
        [M2]
        ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_matches(response["answer"])

    async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]:
        """Create mappings between source and target domains."""
        prompt = f"""
        Create analogical mappings:
        Matches: {json.dumps(matches)}
        Context: {json.dumps(context)}
        
        For each mapping specify:
        1. [Type]: {" | ".join([t.value for t in MappingType])}
        2. [Elements]: Source and target elements
        3. [Correspondences]: Element mappings
        4. [Transformations]: Required adaptations
        5. [Confidence]: Mapping strength
        
        Format as:
        [Map1]
        Type: ...
        Elements: ...
        Correspondences: ...
        Transformations: ...
        Confidence: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_mappings(response["answer"])

    async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]:
        """Generate solutions through analogical transfer."""
        prompt = f"""
        Generate analogical solutions:
        Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])}
        Context: {json.dumps(context)}
        
        For each solution provide:
        1. Analogical inference
        2. Required adaptations
        3. Validation criteria
        4. Confidence assessment
        5. Reasoning trace
        
        Format as:
        [S1]
        Inference: ...
        Adaptation: ...
        Validation: ...
        Confidence: ...
        Trace: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_solutions(response["answer"], mappings)

    async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution:
        """Select the best solution based on multiple criteria."""
        prompt = f"""
        Evaluate and select best solution:
        Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])}
        Context: {json.dumps(context)}
        
        Evaluate based on:
        1. Inference quality
        2. Adaptation feasibility
        3. Validation strength
        4. Overall confidence
        
        Format as:
        [Evaluation]
        Rankings: ...
        Rationale: ...
        Selection: ...
        Confidence: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        selection = self._parse_selection(response["answer"])
        
        # Find selected solution
        selected = max(solutions, key=lambda s: s.confidence)
        for solution in solutions:
            if solution.id == selection.get("selected_id"):
                selected = solution
                break
        
        return selected

    def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution):
        """Update knowledge base with new patterns and successful mappings."""
        # Update patterns
        for pattern in patterns:
            if pattern.id not in self.patterns:
                self.patterns[pattern.id] = pattern
            self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence
        
        # Update mappings
        if solution.mapping.id not in self.mappings:
            self.mappings[solution.mapping.id] = solution.mapping
        
        # Record solution
        self.solutions[solution.id] = solution
        
        # Update history
        self.success_history.append({
            "timestamp": datetime.now().isoformat(),
            "solution_id": solution.id,
            "confidence": solution.confidence,
            "patterns": [p.id for p in patterns],
            "mapping_type": solution.mapping.type.value
        })
        
        # Update adaptation history
        self.adaptation_history.append({
            "timestamp": datetime.now().isoformat(),
            "solution_id": solution.id,
            "adaptations": solution.adaptation,
            "success": solution.confidence >= self.adaptation_threshold
        })

    def _parse_patterns(self, response: str) -> List[AnalogicalPattern]:
        """Parse patterns from response."""
        patterns = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[P'):
                if current:
                    patterns.append(current)
                current = None
            elif line.startswith('Level:'):
                level_str = line[6:].strip().lower()
                try:
                    level = AnalogicalLevel(level_str)
                    current = AnalogicalPattern(
                        id=f"pattern_{len(patterns)}",
                        level=level,
                        features={},
                        relations=[],
                        constraints=[],
                        metadata={}
                    )
                except ValueError:
                    logging.warning(f"Invalid analogical level: {level_str}")
            elif current:
                if line.startswith('Features:'):
                    try:
                        current.features = json.loads(line[9:].strip())
                    except:
                        current.features = {"raw": line[9:].strip()}
                elif line.startswith('Relations:'):
                    relations = [r.strip() for r in line[10:].split(',')]
                    current.relations = [(r.split()[0], r.split()[1], r.split()[2]) 
                                      for r in relations if len(r.split()) >= 3]
                elif line.startswith('Constraints:'):
                    current.constraints = [c.strip() for c in line[12:].split(',')]
        
        if current:
            patterns.append(current)
        
        return patterns

    def _parse_matches(self, response: str) -> List[Dict[str, Any]]:
        """Parse matches from response."""
        matches = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[M'):
                if current:
                    matches.append(current)
                current = {
                    "source": "",
                    "similarity": 0.0,
                    "correspondences": [],
                    "transfer": []
                }
            elif current:
                if line.startswith('Source:'):
                    current["source"] = line[7:].strip()
                elif line.startswith('Similarity:'):
                    try:
                        current["similarity"] = float(line[11:].strip())
                    except:
                        pass
                elif line.startswith('Correspondences:'):
                    current["correspondences"] = [c.strip() for c in line[16:].split(',')]
                elif line.startswith('Transfer:'):
                    current["transfer"] = [t.strip() for t in line[9:].split(',')]
        
        if current:
            matches.append(current)
        
        return matches

    def _parse_mappings(self, response: str) -> List[AnalogicalMapping]:
        """Parse mappings from response."""
        mappings = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[Map'):
                if current:
                    mappings.append(current)
                current = None
            elif line.startswith('Type:'):
                type_str = line[5:].strip().lower()
                try:
                    mapping_type = MappingType(type_str)
                    current = AnalogicalMapping(
                        id=f"mapping_{len(mappings)}",
                        type=mapping_type,
                        source_elements={},
                        target_elements={},
                        correspondences=[],
                        transformations=[],
                        confidence=0.0,
                        metadata={}
                    )
                except ValueError:
                    logging.warning(f"Invalid mapping type: {type_str}")
            elif current:
                if line.startswith('Elements:'):
                    try:
                        elements = json.loads(line[9:].strip())
                        current.source_elements = elements.get("source", {})
                        current.target_elements = elements.get("target", {})
                    except:
                        pass
                elif line.startswith('Correspondences:'):
                    pairs = [c.strip() for c in line[16:].split(',')]
                    for pair in pairs:
                        parts = pair.split(':')
                        if len(parts) >= 2:
                            source = parts[0].strip()
                            target = parts[1].strip()
                            strength = float(parts[2]) if len(parts) > 2 else 1.0
                            current.correspondences.append((source, target, strength))
                elif line.startswith('Transformations:'):
                    try:
                        current.transformations = json.loads(line[16:].strip())
                    except:
                        current.transformations = [{"raw": line[16:].strip()}]
                elif line.startswith('Confidence:'):
                    try:
                        current.confidence = float(line[11:].strip())
                    except:
                        pass
        
        if current:
            mappings.append(current)
        
        return mappings

    def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]:
        """Parse solutions from response."""
        solutions = []
        current = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[S'):
                if current:
                    solutions.append(current)
                current = None
                mapping_idx = len(solutions)
                if mapping_idx < len(mappings):
                    current = AnalogicalSolution(
                        id=f"solution_{len(solutions)}",
                        source_analogy="",
                        mapping=mappings[mapping_idx],
                        adaptation={},
                        inference={},
                        confidence=0.0,
                        validation={},
                        metadata={}
                    )
            elif current:
                if line.startswith('Inference:'):
                    try:
                        current.inference = json.loads(line[10:].strip())
                    except:
                        current.inference = {"conclusion": line[10:].strip()}
                elif line.startswith('Adaptation:'):
                    try:
                        current.adaptation = json.loads(line[11:].strip())
                    except:
                        current.adaptation = {"steps": [line[11:].strip()]}
                elif line.startswith('Validation:'):
                    try:
                        current.validation = json.loads(line[11:].strip())
                    except:
                        current.validation = {"criteria": [line[11:].strip()]}
                elif line.startswith('Confidence:'):
                    try:
                        current.confidence = float(line[11:].strip())
                    except:
                        pass
                elif line.startswith('Trace:'):
                    current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')]
        
        if current:
            solutions.append(current)
        
        return solutions

    def _parse_selection(self, response: str) -> Dict[str, Any]:
        """Parse solution selection from response."""
        selection = {
            "selected_id": None,
            "confidence": 0.0,
            "rationale": []
        }
        
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Selection:'):
                selection["selected_id"] = line[10:].strip()
            elif line.startswith('Confidence:'):
                try:
                    selection["confidence"] = float(line[11:].strip())
                except:
                    pass
            elif line.startswith('Rationale:'):
                selection["rationale"] = [r.strip() for r in line[10:].split(',')]
        
        return selection

    def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
        """Convert pattern to dictionary for serialization."""
        return {
            "id": pattern.id,
            "level": pattern.level.value,
            "features": pattern.features,
            "relations": pattern.relations,
            "constraints": pattern.constraints,
            "metadata": pattern.metadata
        }

    def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
        """Convert mapping to dictionary for serialization."""
        return {
            "id": mapping.id,
            "type": mapping.type.value,
            "source_elements": mapping.source_elements,
            "target_elements": mapping.target_elements,
            "correspondences": mapping.correspondences,
            "transformations": mapping.transformations,
            "confidence": mapping.confidence,
            "metadata": mapping.metadata
        }

    def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
        """Convert solution to dictionary for serialization."""
        return {
            "id": solution.id,
            "source_analogy": solution.source_analogy,
            "mapping": self._mapping_to_dict(solution.mapping),
            "adaptation": solution.adaptation,
            "inference": solution.inference,
            "confidence": solution.confidence,
            "validation": solution.validation,
            "metadata": solution.metadata
        }

    def get_pattern_statistics(self) -> Dict[str, Any]:
        """Get statistics about pattern usage and effectiveness."""
        return {
            "total_patterns": len(self.patterns),
            "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}),
            "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0,
            "pattern_weights": dict(self.pattern_weights)
        }

    def get_mapping_statistics(self) -> Dict[str, Any]:
        """Get statistics about mapping effectiveness."""
        return {
            "total_mappings": len(self.mappings),
            "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}),
            "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0,
            "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()})
        }

    def get_solution_statistics(self) -> Dict[str, Any]:
        """Get statistics about solution quality."""
        return {
            "total_solutions": len(self.solutions),
            "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0,
            "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0
        }

    def clear_knowledge_base(self):
        """Clear the knowledge base."""
        self.patterns.clear()
        self.mappings.clear()
        self.solutions.clear()
        self.pattern_weights.clear()
        self.success_history.clear()
        self.adaptation_history.clear()