Spaces:
Runtime error
Runtime error
""" | |
Advanced Agentic System | |
---------------------- | |
A sophisticated multi-agent system with: | |
Core Components: | |
1. Agent Management | |
2. Task Execution | |
3. Learning & Adaptation | |
4. Communication | |
5. Resource Management | |
Advanced Features: | |
1. Self-Improvement | |
2. Multi-Agent Coordination | |
3. Dynamic Role Assignment | |
4. Emergent Behavior | |
""" | |
import logging | |
from typing import Dict, Any, List, Optional, Union, TypeVar | |
from dataclasses import dataclass, field | |
from enum import Enum | |
import json | |
import asyncio | |
from datetime import datetime | |
import uuid | |
from concurrent.futures import ThreadPoolExecutor | |
import numpy as np | |
from collections import defaultdict | |
from orchestrator import ( | |
AgentOrchestrator, | |
AgentRole, | |
AgentState, | |
TaskPriority, | |
Task | |
) | |
from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode | |
from reasoning.meta_learning import MetaLearningStrategy | |
class AgentCapability(Enum): | |
"""Core capabilities of agents.""" | |
REASONING = "reasoning" | |
LEARNING = "learning" | |
EXECUTION = "execution" | |
COORDINATION = "coordination" | |
MONITORING = "monitoring" | |
class AgentPersonality(Enum): | |
"""Different personality types for agents.""" | |
ANALYTICAL = "analytical" | |
CREATIVE = "creative" | |
CAUTIOUS = "cautious" | |
PROACTIVE = "proactive" | |
ADAPTIVE = "adaptive" | |
class AgentProfile: | |
"""Profile defining an agent's characteristics.""" | |
id: str | |
name: str | |
role: AgentRole | |
capabilities: List[AgentCapability] | |
personality: AgentPersonality | |
expertise_areas: List[str] | |
learning_rate: float | |
risk_tolerance: float | |
created_at: datetime | |
metadata: Dict[str, Any] | |
class Agent: | |
"""Advanced autonomous agent with learning capabilities.""" | |
def __init__( | |
self, | |
profile: AgentProfile, | |
reasoning_engine: ReasoningEngine, | |
meta_learning: MetaLearningStrategy, | |
config: Dict[str, Any] = None | |
): | |
self.profile = profile | |
self.reasoning_engine = reasoning_engine | |
self.meta_learning = meta_learning | |
self.config = config or {} | |
# State management | |
self.state = AgentState.IDLE | |
self.current_task: Optional[Task] = None | |
self.task_history: List[Task] = [] | |
# Learning and adaptation | |
self.knowledge_base: Dict[str, Any] = {} | |
self.learned_patterns: List[Dict[str, Any]] = [] | |
self.adaptation_history: List[Dict[str, Any]] = [] | |
# Performance metrics | |
self.metrics: Dict[str, List[float]] = defaultdict(list) | |
self.performance_history: List[Dict[str, float]] = [] | |
# Communication | |
self.message_queue = asyncio.Queue() | |
self.response_queue = asyncio.Queue() | |
# Resource management | |
self.resource_usage: Dict[str, float] = {} | |
self.resource_limits: Dict[str, float] = {} | |
# Async support | |
self.executor = ThreadPoolExecutor(max_workers=2) | |
self.lock = asyncio.Lock() | |
# Logging | |
self.logger = logging.getLogger(f"Agent-{profile.id}") | |
# Initialize components | |
self._init_components() | |
def _init_components(self): | |
"""Initialize agent components.""" | |
# Set up knowledge base | |
self.knowledge_base = { | |
"expertise": {area: 0.5 for area in self.profile.expertise_areas}, | |
"learned_skills": set(), | |
"interaction_patterns": defaultdict(int), | |
"success_patterns": defaultdict(float) | |
} | |
# Set up resource limits | |
self.resource_limits = { | |
"cpu": 1.0, | |
"memory": 1000, | |
"api_calls": 100, | |
"learning_capacity": 0.8 | |
} | |
async def process_task(self, task: Task) -> Dict[str, Any]: | |
"""Process an assigned task.""" | |
try: | |
self.current_task = task | |
self.state = AgentState.BUSY | |
# Analyze task | |
analysis = await self._analyze_task(task) | |
# Plan execution | |
plan = await self._plan_execution(analysis) | |
# Execute plan | |
result = await self._execute_plan(plan) | |
# Learn from execution | |
await self._learn_from_execution(task, result) | |
# Update metrics | |
self._update_metrics(task, result) | |
return { | |
"success": True, | |
"task_id": task.id, | |
"result": result, | |
"metrics": self._get_execution_metrics() | |
} | |
except Exception as e: | |
self.logger.error(f"Error processing task: {e}") | |
self.state = AgentState.ERROR | |
return { | |
"success": False, | |
"task_id": task.id, | |
"error": str(e) | |
} | |
finally: | |
self.state = AgentState.IDLE | |
self.current_task = None | |
async def _analyze_task(self, task: Task) -> Dict[str, Any]: | |
"""Analyze task requirements and constraints.""" | |
# Use reasoning engine for analysis | |
analysis = await self.reasoning_engine.reason( | |
query=task.description, | |
context={ | |
"agent_profile": self.profile.__dict__, | |
"task_history": self.task_history, | |
"knowledge_base": self.knowledge_base | |
}, | |
mode=ReasoningMode.ANALYTICAL | |
) | |
return { | |
"requirements": analysis.get("requirements", []), | |
"constraints": analysis.get("constraints", []), | |
"complexity": analysis.get("complexity", 0.5), | |
"estimated_duration": analysis.get("estimated_duration", 3600), | |
"required_capabilities": analysis.get("required_capabilities", []) | |
} | |
async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Plan task execution based on analysis.""" | |
# Use reasoning engine for planning | |
plan = await self.reasoning_engine.reason( | |
query="Plan execution steps", | |
context={ | |
"analysis": analysis, | |
"agent_capabilities": self.profile.capabilities, | |
"resource_limits": self.resource_limits | |
}, | |
mode=ReasoningMode.FOCUSED | |
) | |
return plan.get("steps", []) | |
async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]: | |
"""Execute the planned steps.""" | |
results = [] | |
for step in plan: | |
try: | |
# Check resources | |
if not self._check_resources(step): | |
raise RuntimeError("Insufficient resources for step execution") | |
# Execute step | |
step_result = await self._execute_step(step) | |
results.append(step_result) | |
# Update resource usage | |
self._update_resource_usage(step) | |
# Learn from step execution | |
await self._learn_from_step(step, step_result) | |
except Exception as e: | |
self.logger.error(f"Error executing step: {e}") | |
results.append({"error": str(e)}) | |
return { | |
"success": all(r.get("success", False) for r in results), | |
"results": results | |
} | |
async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute a single step of the plan.""" | |
step_type = step.get("type", "unknown") | |
if step_type == "reasoning": | |
return await self._execute_reasoning_step(step) | |
elif step_type == "learning": | |
return await self._execute_learning_step(step) | |
elif step_type == "action": | |
return await self._execute_action_step(step) | |
else: | |
raise ValueError(f"Unknown step type: {step_type}") | |
async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute a reasoning step.""" | |
result = await self.reasoning_engine.reason( | |
query=step["query"], | |
context=step.get("context", {}), | |
mode=ReasoningMode.ANALYTICAL | |
) | |
return { | |
"success": result.get("success", False), | |
"reasoning_result": result | |
} | |
async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute a learning step.""" | |
result = await self.meta_learning.learn( | |
data=step["data"], | |
context=step.get("context", {}) | |
) | |
return { | |
"success": result.get("success", False), | |
"learning_result": result | |
} | |
async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]: | |
"""Execute an action step.""" | |
action_type = step.get("action_type") | |
if action_type == "api_call": | |
return await self._make_api_call(step) | |
elif action_type == "data_processing": | |
return await self._process_data(step) | |
elif action_type == "coordination": | |
return await self._coordinate_action(step) | |
else: | |
raise ValueError(f"Unknown action type: {action_type}") | |
def _check_resources(self, step: Dict[str, Any]) -> bool: | |
"""Check if sufficient resources are available.""" | |
required_resources = step.get("required_resources", {}) | |
for resource, amount in required_resources.items(): | |
if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')): | |
return False | |
return True | |
def _update_resource_usage(self, step: Dict[str, Any]): | |
"""Update resource usage after step execution.""" | |
used_resources = step.get("used_resources", {}) | |
for resource, amount in used_resources.items(): | |
self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount | |
async def _learn_from_execution(self, task: Task, result: Dict[str, Any]): | |
"""Learn from task execution experience.""" | |
# Prepare learning data | |
learning_data = { | |
"task": task.__dict__, | |
"result": result, | |
"context": { | |
"agent_state": self.state, | |
"resource_usage": self.resource_usage, | |
"performance_metrics": self._get_execution_metrics() | |
} | |
} | |
# Learn patterns | |
patterns = await self.meta_learning.learn( | |
data=learning_data, | |
context=self.knowledge_base | |
) | |
# Update knowledge base | |
self._update_knowledge_base(patterns) | |
# Record adaptation | |
self.adaptation_history.append({ | |
"timestamp": datetime.now(), | |
"patterns": patterns, | |
"metrics": self._get_execution_metrics() | |
}) | |
async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]): | |
"""Learn from individual step execution.""" | |
if result.get("success", False): | |
# Update success patterns | |
pattern_key = f"{step['type']}:{step.get('action_type', 'none')}" | |
self.knowledge_base["success_patterns"][pattern_key] += 1 | |
# Learn from successful execution | |
await self.meta_learning.learn( | |
data={ | |
"step": step, | |
"result": result | |
}, | |
context={"pattern_key": pattern_key} | |
) | |
def _update_knowledge_base(self, patterns: Dict[str, Any]): | |
"""Update knowledge base with new patterns.""" | |
# Update expertise levels | |
for area, pattern in patterns.get("expertise_patterns", {}).items(): | |
if area in self.knowledge_base["expertise"]: | |
current = self.knowledge_base["expertise"][area] | |
self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1 | |
# Add new learned skills | |
new_skills = patterns.get("learned_skills", set()) | |
self.knowledge_base["learned_skills"].update(new_skills) | |
# Update interaction patterns | |
for pattern, count in patterns.get("interaction_patterns", {}).items(): | |
self.knowledge_base["interaction_patterns"][pattern] += count | |
def _update_metrics(self, task: Task, result: Dict[str, Any]): | |
"""Update performance metrics.""" | |
metrics = { | |
"success": float(result.get("success", False)), | |
"duration": (datetime.now() - task.created_at).total_seconds(), | |
"resource_efficiency": self._calculate_resource_efficiency(), | |
"learning_progress": self._calculate_learning_progress() | |
} | |
for key, value in metrics.items(): | |
self.metrics[key].append(value) | |
self.performance_history.append({ | |
"timestamp": datetime.now(), | |
"metrics": metrics | |
}) | |
def _calculate_resource_efficiency(self) -> float: | |
"""Calculate resource usage efficiency.""" | |
if not self.resource_limits: | |
return 1.0 | |
efficiencies = [] | |
for resource, usage in self.resource_usage.items(): | |
limit = self.resource_limits.get(resource, float('inf')) | |
if limit > 0: | |
efficiencies.append(1 - (usage / limit)) | |
return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0 | |
def _calculate_learning_progress(self) -> float: | |
"""Calculate learning progress.""" | |
if not self.knowledge_base["expertise"]: | |
return 0.0 | |
return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"]) | |
def _get_execution_metrics(self) -> Dict[str, float]: | |
"""Get current execution metrics.""" | |
return { | |
key: sum(values[-10:]) / len(values[-10:]) | |
for key, values in self.metrics.items() | |
if values | |
} | |
class AgenticSystem: | |
"""Advanced multi-agent system with orchestration.""" | |
def __init__(self, config: Dict[str, Any] = None): | |
self.config = config or {} | |
# Initialize orchestrator | |
self.orchestrator = AgentOrchestrator(config) | |
# Initialize components | |
self.agents: Dict[str, Agent] = {} | |
self.reasoning_engine = ReasoningEngine( | |
min_confidence=self.config.get('min_confidence', 0.7), | |
parallel_threshold=self.config.get('parallel_threshold', 3), | |
learning_rate=self.config.get('learning_rate', 0.1), | |
strategy_weights=self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
) | |
self.meta_learning = MetaLearningStrategy(config) | |
# System state | |
self.state = "initialized" | |
self.metrics: Dict[str, List[float]] = defaultdict(list) | |
# Async support | |
self.executor = ThreadPoolExecutor(max_workers=4) | |
self.lock = asyncio.Lock() | |
# Logging | |
self.logger = logging.getLogger("AgenticSystem") | |
async def create_agent( | |
self, | |
name: str, | |
role: AgentRole, | |
capabilities: List[AgentCapability], | |
personality: AgentPersonality, | |
expertise_areas: List[str] | |
) -> str: | |
"""Create a new agent.""" | |
# Create agent profile | |
profile = AgentProfile( | |
id=str(uuid.uuid4()), | |
name=name, | |
role=role, | |
capabilities=capabilities, | |
personality=personality, | |
expertise_areas=expertise_areas, | |
learning_rate=0.1, | |
risk_tolerance=0.5, | |
created_at=datetime.now(), | |
metadata={} | |
) | |
# Create agent instance | |
agent = Agent( | |
profile=profile, | |
reasoning_engine=self.reasoning_engine, | |
meta_learning=self.meta_learning, | |
config=self.config.get("agent_config", {}) | |
) | |
# Register with orchestrator | |
agent_id = await self.orchestrator.register_agent( | |
role=role, | |
capabilities=[c.value for c in capabilities] | |
) | |
# Store agent | |
async with self.lock: | |
self.agents[agent_id] = agent | |
return agent_id | |
async def submit_task( | |
self, | |
description: str, | |
priority: TaskPriority = TaskPriority.MEDIUM, | |
deadline: Optional[datetime] = None | |
) -> str: | |
"""Submit a task to the system.""" | |
return await self.orchestrator.submit_task( | |
description=description, | |
priority=priority, | |
deadline=deadline | |
) | |
async def get_task_status(self, task_id: str) -> Dict[str, Any]: | |
"""Get status of a task.""" | |
return await self.orchestrator.get_task_status(task_id) | |
async def get_agent_status(self, agent_id: str) -> Dict[str, Any]: | |
"""Get status of an agent.""" | |
agent = self.agents.get(agent_id) | |
if not agent: | |
raise ValueError(f"Unknown agent: {agent_id}") | |
return { | |
"profile": agent.profile.__dict__, | |
"state": agent.state, | |
"current_task": agent.current_task.__dict__ if agent.current_task else None, | |
"metrics": agent._get_execution_metrics(), | |
"resource_usage": agent.resource_usage | |
} | |
async def get_system_status(self) -> Dict[str, Any]: | |
"""Get overall system status.""" | |
return { | |
"state": self.state, | |
"agent_count": len(self.agents), | |
"active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]), | |
"performance_metrics": self._calculate_system_metrics(), | |
"resource_usage": self._calculate_resource_usage() | |
} | |
def _calculate_system_metrics(self) -> Dict[str, float]: | |
"""Calculate overall system metrics.""" | |
metrics = defaultdict(list) | |
for agent in self.agents.values(): | |
agent_metrics = agent._get_execution_metrics() | |
for key, value in agent_metrics.items(): | |
metrics[key].append(value) | |
return { | |
key: sum(values) / len(values) | |
for key, values in metrics.items() | |
if values | |
} | |
def _calculate_resource_usage(self) -> Dict[str, float]: | |
"""Calculate overall resource usage.""" | |
usage = defaultdict(float) | |
for agent in self.agents.values(): | |
for resource, amount in agent.resource_usage.items(): | |
usage[resource] += amount | |
return dict(usage) | |