File size: 19,200 Bytes
1d75522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
"""
Advanced Agentic System
----------------------
A sophisticated multi-agent system with:

Core Components:
1. Agent Management
2. Task Execution
3. Learning & Adaptation
4. Communication
5. Resource Management

Advanced Features:
1. Self-Improvement
2. Multi-Agent Coordination
3. Dynamic Role Assignment
4. Emergent Behavior
"""

import logging
from typing import Dict, Any, List, Optional, Union, TypeVar
from dataclasses import dataclass, field
from enum import Enum
import json
import asyncio
from datetime import datetime
import uuid
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from collections import defaultdict

from orchestrator import (
    AgentOrchestrator,
    AgentRole,
    AgentState,
    TaskPriority,
    Task
)
from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
from reasoning.meta_learning import MetaLearningStrategy

class AgentCapability(Enum):
    """Core capabilities of agents."""
    REASONING = "reasoning"
    LEARNING = "learning"
    EXECUTION = "execution"
    COORDINATION = "coordination"
    MONITORING = "monitoring"

class AgentPersonality(Enum):
    """Different personality types for agents."""
    ANALYTICAL = "analytical"
    CREATIVE = "creative"
    CAUTIOUS = "cautious"
    PROACTIVE = "proactive"
    ADAPTIVE = "adaptive"

@dataclass
class AgentProfile:
    """Profile defining an agent's characteristics."""
    id: str
    name: str
    role: AgentRole
    capabilities: List[AgentCapability]
    personality: AgentPersonality
    expertise_areas: List[str]
    learning_rate: float
    risk_tolerance: float
    created_at: datetime
    metadata: Dict[str, Any]

class Agent:
    """Advanced autonomous agent with learning capabilities."""
    
    def __init__(
        self,
        profile: AgentProfile,
        reasoning_engine: ReasoningEngine,
        meta_learning: MetaLearningStrategy,
        config: Dict[str, Any] = None
    ):
        self.profile = profile
        self.reasoning_engine = reasoning_engine
        self.meta_learning = meta_learning
        self.config = config or {}
        
        # State management
        self.state = AgentState.IDLE
        self.current_task: Optional[Task] = None
        self.task_history: List[Task] = []
        
        # Learning and adaptation
        self.knowledge_base: Dict[str, Any] = {}
        self.learned_patterns: List[Dict[str, Any]] = []
        self.adaptation_history: List[Dict[str, Any]] = []
        
        # Performance metrics
        self.metrics: Dict[str, List[float]] = defaultdict(list)
        self.performance_history: List[Dict[str, float]] = []
        
        # Communication
        self.message_queue = asyncio.Queue()
        self.response_queue = asyncio.Queue()
        
        # Resource management
        self.resource_usage: Dict[str, float] = {}
        self.resource_limits: Dict[str, float] = {}
        
        # Async support
        self.executor = ThreadPoolExecutor(max_workers=2)
        self.lock = asyncio.Lock()
        
        # Logging
        self.logger = logging.getLogger(f"Agent-{profile.id}")
        
        # Initialize components
        self._init_components()

    def _init_components(self):
        """Initialize agent components."""
        # Set up knowledge base
        self.knowledge_base = {
            "expertise": {area: 0.5 for area in self.profile.expertise_areas},
            "learned_skills": set(),
            "interaction_patterns": defaultdict(int),
            "success_patterns": defaultdict(float)
        }
        
        # Set up resource limits
        self.resource_limits = {
            "cpu": 1.0,
            "memory": 1000,
            "api_calls": 100,
            "learning_capacity": 0.8
        }

    async def process_task(self, task: Task) -> Dict[str, Any]:
        """Process an assigned task."""
        try:
            self.current_task = task
            self.state = AgentState.BUSY
            
            # Analyze task
            analysis = await self._analyze_task(task)
            
            # Plan execution
            plan = await self._plan_execution(analysis)
            
            # Execute plan
            result = await self._execute_plan(plan)
            
            # Learn from execution
            await self._learn_from_execution(task, result)
            
            # Update metrics
            self._update_metrics(task, result)
            
            return {
                "success": True,
                "task_id": task.id,
                "result": result,
                "metrics": self._get_execution_metrics()
            }
            
        except Exception as e:
            self.logger.error(f"Error processing task: {e}")
            self.state = AgentState.ERROR
            return {
                "success": False,
                "task_id": task.id,
                "error": str(e)
            }
        finally:
            self.state = AgentState.IDLE
            self.current_task = None

    async def _analyze_task(self, task: Task) -> Dict[str, Any]:
        """Analyze task requirements and constraints."""
        # Use reasoning engine for analysis
        analysis = await self.reasoning_engine.reason(
            query=task.description,
            context={
                "agent_profile": self.profile.__dict__,
                "task_history": self.task_history,
                "knowledge_base": self.knowledge_base
            },
            mode=ReasoningMode.ANALYTICAL
        )
        
        return {
            "requirements": analysis.get("requirements", []),
            "constraints": analysis.get("constraints", []),
            "complexity": analysis.get("complexity", 0.5),
            "estimated_duration": analysis.get("estimated_duration", 3600),
            "required_capabilities": analysis.get("required_capabilities", [])
        }

    async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Plan task execution based on analysis."""
        # Use reasoning engine for planning
        plan = await self.reasoning_engine.reason(
            query="Plan execution steps",
            context={
                "analysis": analysis,
                "agent_capabilities": self.profile.capabilities,
                "resource_limits": self.resource_limits
            },
            mode=ReasoningMode.FOCUSED
        )
        
        return plan.get("steps", [])

    async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]:
        """Execute the planned steps."""
        results = []
        
        for step in plan:
            try:
                # Check resources
                if not self._check_resources(step):
                    raise RuntimeError("Insufficient resources for step execution")
                
                # Execute step
                step_result = await self._execute_step(step)
                results.append(step_result)
                
                # Update resource usage
                self._update_resource_usage(step)
                
                # Learn from step execution
                await self._learn_from_step(step, step_result)
                
            except Exception as e:
                self.logger.error(f"Error executing step: {e}")
                results.append({"error": str(e)})
        
        return {
            "success": all(r.get("success", False) for r in results),
            "results": results
        }

    async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
        """Execute a single step of the plan."""
        step_type = step.get("type", "unknown")
        
        if step_type == "reasoning":
            return await self._execute_reasoning_step(step)
        elif step_type == "learning":
            return await self._execute_learning_step(step)
        elif step_type == "action":
            return await self._execute_action_step(step)
        else:
            raise ValueError(f"Unknown step type: {step_type}")

    async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
        """Execute a reasoning step."""
        result = await self.reasoning_engine.reason(
            query=step["query"],
            context=step.get("context", {}),
            mode=ReasoningMode.ANALYTICAL
        )
        
        return {
            "success": result.get("success", False),
            "reasoning_result": result
        }

    async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
        """Execute a learning step."""
        result = await self.meta_learning.learn(
            data=step["data"],
            context=step.get("context", {})
        )
        
        return {
            "success": result.get("success", False),
            "learning_result": result
        }

    async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
        """Execute an action step."""
        action_type = step.get("action_type")
        
        if action_type == "api_call":
            return await self._make_api_call(step)
        elif action_type == "data_processing":
            return await self._process_data(step)
        elif action_type == "coordination":
            return await self._coordinate_action(step)
        else:
            raise ValueError(f"Unknown action type: {action_type}")

    def _check_resources(self, step: Dict[str, Any]) -> bool:
        """Check if sufficient resources are available."""
        required_resources = step.get("required_resources", {})
        
        for resource, amount in required_resources.items():
            if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')):
                return False
        
        return True

    def _update_resource_usage(self, step: Dict[str, Any]):
        """Update resource usage after step execution."""
        used_resources = step.get("used_resources", {})
        
        for resource, amount in used_resources.items():
            self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount

    async def _learn_from_execution(self, task: Task, result: Dict[str, Any]):
        """Learn from task execution experience."""
        # Prepare learning data
        learning_data = {
            "task": task.__dict__,
            "result": result,
            "context": {
                "agent_state": self.state,
                "resource_usage": self.resource_usage,
                "performance_metrics": self._get_execution_metrics()
            }
        }
        
        # Learn patterns
        patterns = await self.meta_learning.learn(
            data=learning_data,
            context=self.knowledge_base
        )
        
        # Update knowledge base
        self._update_knowledge_base(patterns)
        
        # Record adaptation
        self.adaptation_history.append({
            "timestamp": datetime.now(),
            "patterns": patterns,
            "metrics": self._get_execution_metrics()
        })

    async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]):
        """Learn from individual step execution."""
        if result.get("success", False):
            # Update success patterns
            pattern_key = f"{step['type']}:{step.get('action_type', 'none')}"
            self.knowledge_base["success_patterns"][pattern_key] += 1
            
            # Learn from successful execution
            await self.meta_learning.learn(
                data={
                    "step": step,
                    "result": result
                },
                context={"pattern_key": pattern_key}
            )

    def _update_knowledge_base(self, patterns: Dict[str, Any]):
        """Update knowledge base with new patterns."""
        # Update expertise levels
        for area, pattern in patterns.get("expertise_patterns", {}).items():
            if area in self.knowledge_base["expertise"]:
                current = self.knowledge_base["expertise"][area]
                self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1
        
        # Add new learned skills
        new_skills = patterns.get("learned_skills", set())
        self.knowledge_base["learned_skills"].update(new_skills)
        
        # Update interaction patterns
        for pattern, count in patterns.get("interaction_patterns", {}).items():
            self.knowledge_base["interaction_patterns"][pattern] += count

    def _update_metrics(self, task: Task, result: Dict[str, Any]):
        """Update performance metrics."""
        metrics = {
            "success": float(result.get("success", False)),
            "duration": (datetime.now() - task.created_at).total_seconds(),
            "resource_efficiency": self._calculate_resource_efficiency(),
            "learning_progress": self._calculate_learning_progress()
        }
        
        for key, value in metrics.items():
            self.metrics[key].append(value)
        
        self.performance_history.append({
            "timestamp": datetime.now(),
            "metrics": metrics
        })

    def _calculate_resource_efficiency(self) -> float:
        """Calculate resource usage efficiency."""
        if not self.resource_limits:
            return 1.0
            
        efficiencies = []
        for resource, usage in self.resource_usage.items():
            limit = self.resource_limits.get(resource, float('inf'))
            if limit > 0:
                efficiencies.append(1 - (usage / limit))
                
        return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0

    def _calculate_learning_progress(self) -> float:
        """Calculate learning progress."""
        if not self.knowledge_base["expertise"]:
            return 0.0
            
        return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"])

    def _get_execution_metrics(self) -> Dict[str, float]:
        """Get current execution metrics."""
        return {
            key: sum(values[-10:]) / len(values[-10:])
            for key, values in self.metrics.items()
            if values
        }

class AgenticSystem:
    """Advanced multi-agent system with orchestration."""
    
    def __init__(self, config: Dict[str, Any] = None):
        self.config = config or {}
        
        # Initialize orchestrator
        self.orchestrator = AgentOrchestrator(config)
        
        # Initialize components
        self.agents: Dict[str, Agent] = {}
        self.reasoning_engine = ReasoningEngine(
            min_confidence=self.config.get('min_confidence', 0.7),
            parallel_threshold=self.config.get('parallel_threshold', 3),
            learning_rate=self.config.get('learning_rate', 0.1),
            strategy_weights=self.config.get('strategy_weights', {
                "LOCAL_LLM": 0.8,
                "CHAIN_OF_THOUGHT": 0.6,
                "TREE_OF_THOUGHTS": 0.5,
                "META_LEARNING": 0.4
            })
        )
        self.meta_learning = MetaLearningStrategy(config)
        
        # System state
        self.state = "initialized"
        self.metrics: Dict[str, List[float]] = defaultdict(list)
        
        # Async support
        self.executor = ThreadPoolExecutor(max_workers=4)
        self.lock = asyncio.Lock()
        
        # Logging
        self.logger = logging.getLogger("AgenticSystem")

    async def create_agent(
        self,
        name: str,
        role: AgentRole,
        capabilities: List[AgentCapability],
        personality: AgentPersonality,
        expertise_areas: List[str]
    ) -> str:
        """Create a new agent."""
        # Create agent profile
        profile = AgentProfile(
            id=str(uuid.uuid4()),
            name=name,
            role=role,
            capabilities=capabilities,
            personality=personality,
            expertise_areas=expertise_areas,
            learning_rate=0.1,
            risk_tolerance=0.5,
            created_at=datetime.now(),
            metadata={}
        )
        
        # Create agent instance
        agent = Agent(
            profile=profile,
            reasoning_engine=self.reasoning_engine,
            meta_learning=self.meta_learning,
            config=self.config.get("agent_config", {})
        )
        
        # Register with orchestrator
        agent_id = await self.orchestrator.register_agent(
            role=role,
            capabilities=[c.value for c in capabilities]
        )
        
        # Store agent
        async with self.lock:
            self.agents[agent_id] = agent
        
        return agent_id

    async def submit_task(
        self,
        description: str,
        priority: TaskPriority = TaskPriority.MEDIUM,
        deadline: Optional[datetime] = None
    ) -> str:
        """Submit a task to the system."""
        return await self.orchestrator.submit_task(
            description=description,
            priority=priority,
            deadline=deadline
        )

    async def get_task_status(self, task_id: str) -> Dict[str, Any]:
        """Get status of a task."""
        return await self.orchestrator.get_task_status(task_id)

    async def get_agent_status(self, agent_id: str) -> Dict[str, Any]:
        """Get status of an agent."""
        agent = self.agents.get(agent_id)
        if not agent:
            raise ValueError(f"Unknown agent: {agent_id}")
            
        return {
            "profile": agent.profile.__dict__,
            "state": agent.state,
            "current_task": agent.current_task.__dict__ if agent.current_task else None,
            "metrics": agent._get_execution_metrics(),
            "resource_usage": agent.resource_usage
        }

    async def get_system_status(self) -> Dict[str, Any]:
        """Get overall system status."""
        return {
            "state": self.state,
            "agent_count": len(self.agents),
            "active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]),
            "performance_metrics": self._calculate_system_metrics(),
            "resource_usage": self._calculate_resource_usage()
        }

    def _calculate_system_metrics(self) -> Dict[str, float]:
        """Calculate overall system metrics."""
        metrics = defaultdict(list)
        
        for agent in self.agents.values():
            agent_metrics = agent._get_execution_metrics()
            for key, value in agent_metrics.items():
                metrics[key].append(value)
        
        return {
            key: sum(values) / len(values)
            for key, values in metrics.items()
            if values
        }

    def _calculate_resource_usage(self) -> Dict[str, float]:
        """Calculate overall resource usage."""
        usage = defaultdict(float)
        
        for agent in self.agents.values():
            for resource, amount in agent.resource_usage.items():
                usage[resource] += amount
        
        return dict(usage)