Spaces:
Runtime error
Runtime error
File size: 19,200 Bytes
1d75522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
"""
Advanced Agentic System
----------------------
A sophisticated multi-agent system with:
Core Components:
1. Agent Management
2. Task Execution
3. Learning & Adaptation
4. Communication
5. Resource Management
Advanced Features:
1. Self-Improvement
2. Multi-Agent Coordination
3. Dynamic Role Assignment
4. Emergent Behavior
"""
import logging
from typing import Dict, Any, List, Optional, Union, TypeVar
from dataclasses import dataclass, field
from enum import Enum
import json
import asyncio
from datetime import datetime
import uuid
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from collections import defaultdict
from orchestrator import (
AgentOrchestrator,
AgentRole,
AgentState,
TaskPriority,
Task
)
from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
from reasoning.meta_learning import MetaLearningStrategy
class AgentCapability(Enum):
"""Core capabilities of agents."""
REASONING = "reasoning"
LEARNING = "learning"
EXECUTION = "execution"
COORDINATION = "coordination"
MONITORING = "monitoring"
class AgentPersonality(Enum):
"""Different personality types for agents."""
ANALYTICAL = "analytical"
CREATIVE = "creative"
CAUTIOUS = "cautious"
PROACTIVE = "proactive"
ADAPTIVE = "adaptive"
@dataclass
class AgentProfile:
"""Profile defining an agent's characteristics."""
id: str
name: str
role: AgentRole
capabilities: List[AgentCapability]
personality: AgentPersonality
expertise_areas: List[str]
learning_rate: float
risk_tolerance: float
created_at: datetime
metadata: Dict[str, Any]
class Agent:
"""Advanced autonomous agent with learning capabilities."""
def __init__(
self,
profile: AgentProfile,
reasoning_engine: ReasoningEngine,
meta_learning: MetaLearningStrategy,
config: Dict[str, Any] = None
):
self.profile = profile
self.reasoning_engine = reasoning_engine
self.meta_learning = meta_learning
self.config = config or {}
# State management
self.state = AgentState.IDLE
self.current_task: Optional[Task] = None
self.task_history: List[Task] = []
# Learning and adaptation
self.knowledge_base: Dict[str, Any] = {}
self.learned_patterns: List[Dict[str, Any]] = []
self.adaptation_history: List[Dict[str, Any]] = []
# Performance metrics
self.metrics: Dict[str, List[float]] = defaultdict(list)
self.performance_history: List[Dict[str, float]] = []
# Communication
self.message_queue = asyncio.Queue()
self.response_queue = asyncio.Queue()
# Resource management
self.resource_usage: Dict[str, float] = {}
self.resource_limits: Dict[str, float] = {}
# Async support
self.executor = ThreadPoolExecutor(max_workers=2)
self.lock = asyncio.Lock()
# Logging
self.logger = logging.getLogger(f"Agent-{profile.id}")
# Initialize components
self._init_components()
def _init_components(self):
"""Initialize agent components."""
# Set up knowledge base
self.knowledge_base = {
"expertise": {area: 0.5 for area in self.profile.expertise_areas},
"learned_skills": set(),
"interaction_patterns": defaultdict(int),
"success_patterns": defaultdict(float)
}
# Set up resource limits
self.resource_limits = {
"cpu": 1.0,
"memory": 1000,
"api_calls": 100,
"learning_capacity": 0.8
}
async def process_task(self, task: Task) -> Dict[str, Any]:
"""Process an assigned task."""
try:
self.current_task = task
self.state = AgentState.BUSY
# Analyze task
analysis = await self._analyze_task(task)
# Plan execution
plan = await self._plan_execution(analysis)
# Execute plan
result = await self._execute_plan(plan)
# Learn from execution
await self._learn_from_execution(task, result)
# Update metrics
self._update_metrics(task, result)
return {
"success": True,
"task_id": task.id,
"result": result,
"metrics": self._get_execution_metrics()
}
except Exception as e:
self.logger.error(f"Error processing task: {e}")
self.state = AgentState.ERROR
return {
"success": False,
"task_id": task.id,
"error": str(e)
}
finally:
self.state = AgentState.IDLE
self.current_task = None
async def _analyze_task(self, task: Task) -> Dict[str, Any]:
"""Analyze task requirements and constraints."""
# Use reasoning engine for analysis
analysis = await self.reasoning_engine.reason(
query=task.description,
context={
"agent_profile": self.profile.__dict__,
"task_history": self.task_history,
"knowledge_base": self.knowledge_base
},
mode=ReasoningMode.ANALYTICAL
)
return {
"requirements": analysis.get("requirements", []),
"constraints": analysis.get("constraints", []),
"complexity": analysis.get("complexity", 0.5),
"estimated_duration": analysis.get("estimated_duration", 3600),
"required_capabilities": analysis.get("required_capabilities", [])
}
async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Plan task execution based on analysis."""
# Use reasoning engine for planning
plan = await self.reasoning_engine.reason(
query="Plan execution steps",
context={
"analysis": analysis,
"agent_capabilities": self.profile.capabilities,
"resource_limits": self.resource_limits
},
mode=ReasoningMode.FOCUSED
)
return plan.get("steps", [])
async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Execute the planned steps."""
results = []
for step in plan:
try:
# Check resources
if not self._check_resources(step):
raise RuntimeError("Insufficient resources for step execution")
# Execute step
step_result = await self._execute_step(step)
results.append(step_result)
# Update resource usage
self._update_resource_usage(step)
# Learn from step execution
await self._learn_from_step(step, step_result)
except Exception as e:
self.logger.error(f"Error executing step: {e}")
results.append({"error": str(e)})
return {
"success": all(r.get("success", False) for r in results),
"results": results
}
async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
"""Execute a single step of the plan."""
step_type = step.get("type", "unknown")
if step_type == "reasoning":
return await self._execute_reasoning_step(step)
elif step_type == "learning":
return await self._execute_learning_step(step)
elif step_type == "action":
return await self._execute_action_step(step)
else:
raise ValueError(f"Unknown step type: {step_type}")
async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
"""Execute a reasoning step."""
result = await self.reasoning_engine.reason(
query=step["query"],
context=step.get("context", {}),
mode=ReasoningMode.ANALYTICAL
)
return {
"success": result.get("success", False),
"reasoning_result": result
}
async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
"""Execute a learning step."""
result = await self.meta_learning.learn(
data=step["data"],
context=step.get("context", {})
)
return {
"success": result.get("success", False),
"learning_result": result
}
async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
"""Execute an action step."""
action_type = step.get("action_type")
if action_type == "api_call":
return await self._make_api_call(step)
elif action_type == "data_processing":
return await self._process_data(step)
elif action_type == "coordination":
return await self._coordinate_action(step)
else:
raise ValueError(f"Unknown action type: {action_type}")
def _check_resources(self, step: Dict[str, Any]) -> bool:
"""Check if sufficient resources are available."""
required_resources = step.get("required_resources", {})
for resource, amount in required_resources.items():
if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')):
return False
return True
def _update_resource_usage(self, step: Dict[str, Any]):
"""Update resource usage after step execution."""
used_resources = step.get("used_resources", {})
for resource, amount in used_resources.items():
self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount
async def _learn_from_execution(self, task: Task, result: Dict[str, Any]):
"""Learn from task execution experience."""
# Prepare learning data
learning_data = {
"task": task.__dict__,
"result": result,
"context": {
"agent_state": self.state,
"resource_usage": self.resource_usage,
"performance_metrics": self._get_execution_metrics()
}
}
# Learn patterns
patterns = await self.meta_learning.learn(
data=learning_data,
context=self.knowledge_base
)
# Update knowledge base
self._update_knowledge_base(patterns)
# Record adaptation
self.adaptation_history.append({
"timestamp": datetime.now(),
"patterns": patterns,
"metrics": self._get_execution_metrics()
})
async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]):
"""Learn from individual step execution."""
if result.get("success", False):
# Update success patterns
pattern_key = f"{step['type']}:{step.get('action_type', 'none')}"
self.knowledge_base["success_patterns"][pattern_key] += 1
# Learn from successful execution
await self.meta_learning.learn(
data={
"step": step,
"result": result
},
context={"pattern_key": pattern_key}
)
def _update_knowledge_base(self, patterns: Dict[str, Any]):
"""Update knowledge base with new patterns."""
# Update expertise levels
for area, pattern in patterns.get("expertise_patterns", {}).items():
if area in self.knowledge_base["expertise"]:
current = self.knowledge_base["expertise"][area]
self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1
# Add new learned skills
new_skills = patterns.get("learned_skills", set())
self.knowledge_base["learned_skills"].update(new_skills)
# Update interaction patterns
for pattern, count in patterns.get("interaction_patterns", {}).items():
self.knowledge_base["interaction_patterns"][pattern] += count
def _update_metrics(self, task: Task, result: Dict[str, Any]):
"""Update performance metrics."""
metrics = {
"success": float(result.get("success", False)),
"duration": (datetime.now() - task.created_at).total_seconds(),
"resource_efficiency": self._calculate_resource_efficiency(),
"learning_progress": self._calculate_learning_progress()
}
for key, value in metrics.items():
self.metrics[key].append(value)
self.performance_history.append({
"timestamp": datetime.now(),
"metrics": metrics
})
def _calculate_resource_efficiency(self) -> float:
"""Calculate resource usage efficiency."""
if not self.resource_limits:
return 1.0
efficiencies = []
for resource, usage in self.resource_usage.items():
limit = self.resource_limits.get(resource, float('inf'))
if limit > 0:
efficiencies.append(1 - (usage / limit))
return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0
def _calculate_learning_progress(self) -> float:
"""Calculate learning progress."""
if not self.knowledge_base["expertise"]:
return 0.0
return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"])
def _get_execution_metrics(self) -> Dict[str, float]:
"""Get current execution metrics."""
return {
key: sum(values[-10:]) / len(values[-10:])
for key, values in self.metrics.items()
if values
}
class AgenticSystem:
"""Advanced multi-agent system with orchestration."""
def __init__(self, config: Dict[str, Any] = None):
self.config = config or {}
# Initialize orchestrator
self.orchestrator = AgentOrchestrator(config)
# Initialize components
self.agents: Dict[str, Agent] = {}
self.reasoning_engine = ReasoningEngine(
min_confidence=self.config.get('min_confidence', 0.7),
parallel_threshold=self.config.get('parallel_threshold', 3),
learning_rate=self.config.get('learning_rate', 0.1),
strategy_weights=self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
)
self.meta_learning = MetaLearningStrategy(config)
# System state
self.state = "initialized"
self.metrics: Dict[str, List[float]] = defaultdict(list)
# Async support
self.executor = ThreadPoolExecutor(max_workers=4)
self.lock = asyncio.Lock()
# Logging
self.logger = logging.getLogger("AgenticSystem")
async def create_agent(
self,
name: str,
role: AgentRole,
capabilities: List[AgentCapability],
personality: AgentPersonality,
expertise_areas: List[str]
) -> str:
"""Create a new agent."""
# Create agent profile
profile = AgentProfile(
id=str(uuid.uuid4()),
name=name,
role=role,
capabilities=capabilities,
personality=personality,
expertise_areas=expertise_areas,
learning_rate=0.1,
risk_tolerance=0.5,
created_at=datetime.now(),
metadata={}
)
# Create agent instance
agent = Agent(
profile=profile,
reasoning_engine=self.reasoning_engine,
meta_learning=self.meta_learning,
config=self.config.get("agent_config", {})
)
# Register with orchestrator
agent_id = await self.orchestrator.register_agent(
role=role,
capabilities=[c.value for c in capabilities]
)
# Store agent
async with self.lock:
self.agents[agent_id] = agent
return agent_id
async def submit_task(
self,
description: str,
priority: TaskPriority = TaskPriority.MEDIUM,
deadline: Optional[datetime] = None
) -> str:
"""Submit a task to the system."""
return await self.orchestrator.submit_task(
description=description,
priority=priority,
deadline=deadline
)
async def get_task_status(self, task_id: str) -> Dict[str, Any]:
"""Get status of a task."""
return await self.orchestrator.get_task_status(task_id)
async def get_agent_status(self, agent_id: str) -> Dict[str, Any]:
"""Get status of an agent."""
agent = self.agents.get(agent_id)
if not agent:
raise ValueError(f"Unknown agent: {agent_id}")
return {
"profile": agent.profile.__dict__,
"state": agent.state,
"current_task": agent.current_task.__dict__ if agent.current_task else None,
"metrics": agent._get_execution_metrics(),
"resource_usage": agent.resource_usage
}
async def get_system_status(self) -> Dict[str, Any]:
"""Get overall system status."""
return {
"state": self.state,
"agent_count": len(self.agents),
"active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]),
"performance_metrics": self._calculate_system_metrics(),
"resource_usage": self._calculate_resource_usage()
}
def _calculate_system_metrics(self) -> Dict[str, float]:
"""Calculate overall system metrics."""
metrics = defaultdict(list)
for agent in self.agents.values():
agent_metrics = agent._get_execution_metrics()
for key, value in agent_metrics.items():
metrics[key].append(value)
return {
key: sum(values) / len(values)
for key, values in metrics.items()
if values
}
def _calculate_resource_usage(self) -> Dict[str, float]:
"""Calculate overall resource usage."""
usage = defaultdict(float)
for agent in self.agents.values():
for resource, amount in agent.resource_usage.items():
usage[resource] += amount
return dict(usage)
|