Spaces:
Runtime error
Runtime error
"""Advanced multimodal reasoning combining different types of information.""" | |
import logging | |
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple | |
import json | |
from dataclasses import dataclass, field | |
from enum import Enum | |
from datetime import datetime | |
import numpy as np | |
from collections import defaultdict | |
from .base import ReasoningStrategy | |
class ModalityFeatures: | |
"""Features extracted from different modalities.""" | |
text: List[Dict[str, Any]] | |
image: Optional[List[Dict[str, Any]]] = None | |
audio: Optional[List[Dict[str, Any]]] = None | |
video: Optional[List[Dict[str, Any]]] = None | |
structured: Optional[List[Dict[str, Any]]] = None | |
class MultiModalReasoning(ReasoningStrategy): | |
""" | |
Advanced multimodal reasoning that: | |
1. Processes different types of information | |
2. Aligns cross-modal features | |
3. Integrates multimodal context | |
4. Generates coherent responses | |
5. Handles uncertainty | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize multimodal reasoning.""" | |
super().__init__() | |
self.config = config or {} | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Configure model repositories | |
self.models = self.config.get('models', { | |
'img2img': { | |
'repo_id': 'enhanceaiteam/Flux-Uncensored-V2', | |
'filename': 'Flux-Uncensored-V2.safetensors' | |
}, | |
'img2vid': { | |
'repo_id': 'stabilityai/stable-video-diffusion-img2vid-xt', | |
'filename': 'svd_xt.safetensors' | |
}, | |
'any2any': { | |
'repo_id': 'deepseek-ai/JanusFlow-1.3B', | |
'filename': 'janusflow-1.3b.safetensors' | |
} | |
}) | |
# Configure modality weights | |
self.weights = self.config.get('modality_weights', { | |
'text': 0.4, | |
'image': 0.3, | |
'audio': 0.1, | |
'video': 0.1, | |
'structured': 0.1 | |
}) | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
""" | |
Apply multimodal reasoning to process and integrate different types of information. | |
Args: | |
query: The input query to reason about | |
context: Additional context and parameters | |
Returns: | |
Dict containing reasoning results and confidence scores | |
""" | |
try: | |
# Process across modalities | |
modalities = await self._process_modalities(query, context) | |
# Align cross-modal information | |
alignment = await self._cross_modal_alignment(modalities, context) | |
# Integrate aligned information | |
integration = await self._integrated_analysis(alignment, context) | |
# Generate final response | |
response = await self._generate_response(integration, context) | |
return { | |
'answer': response.get('text', ''), | |
'confidence': self._calculate_confidence(integration), | |
'modalities': modalities, | |
'alignment': alignment, | |
'integration': integration | |
} | |
except Exception as e: | |
logging.error(f"Multimodal reasoning failed: {str(e)}") | |
return { | |
'error': f"Multimodal reasoning failed: {str(e)}", | |
'confidence': 0.0 | |
} | |
async def _process_modalities( | |
self, | |
query: str, | |
context: Dict[str, Any] | |
) -> Dict[str, List[Dict[str, Any]]]: | |
"""Process query across different modalities.""" | |
modalities = {} | |
# Process text | |
if 'text' in context: | |
modalities['text'] = self._process_text(context['text']) | |
# Process images | |
if 'images' in context: | |
modalities['image'] = self._process_images(context['images']) | |
# Process audio | |
if 'audio' in context: | |
modalities['audio'] = self._process_audio(context['audio']) | |
# Process video | |
if 'video' in context: | |
modalities['video'] = self._process_video(context['video']) | |
# Process structured data | |
if 'structured' in context: | |
modalities['structured'] = self._process_structured(context['structured']) | |
return modalities | |
async def _cross_modal_alignment( | |
self, | |
modalities: Dict[str, List[Dict[str, Any]]], | |
context: Dict[str, Any] | |
) -> List[Dict[str, Any]]: | |
"""Align information across different modalities.""" | |
alignments = [] | |
# Get all modality pairs | |
modality_pairs = [ | |
(m1, m2) for i, m1 in enumerate(modalities.keys()) | |
for m2 in list(modalities.keys())[i+1:] | |
] | |
# Align each pair | |
for mod1, mod2 in modality_pairs: | |
items1 = modalities[mod1] | |
items2 = modalities[mod2] | |
# Calculate cross-modal similarities | |
for item1 in items1: | |
for item2 in items2: | |
similarity = self._calculate_similarity(item1, item2) | |
if similarity > 0.7: # Alignment threshold | |
alignments.append({ | |
'modality1': mod1, | |
'modality2': mod2, | |
'item1': item1, | |
'item2': item2, | |
'similarity': similarity | |
}) | |
return alignments | |
def _calculate_similarity( | |
self, | |
item1: Dict[str, Any], | |
item2: Dict[str, Any] | |
) -> float: | |
"""Calculate similarity between two items from different modalities.""" | |
# Simple feature overlap for now | |
features1 = set(str(v) for v in item1.values()) | |
features2 = set(str(v) for v in item2.values()) | |
if not features1 or not features2: | |
return 0.0 | |
overlap = len(features1.intersection(features2)) | |
total = len(features1.union(features2)) | |
return overlap / total if total > 0 else 0.0 | |
async def _integrated_analysis( | |
self, | |
alignment: List[Dict[str, Any]], | |
context: Dict[str, Any] | |
) -> List[Dict[str, Any]]: | |
"""Perform integrated analysis of aligned information.""" | |
integrated = [] | |
# Group alignments by similarity | |
similarity_groups = defaultdict(list) | |
for align in alignment: | |
similarity_groups[align['similarity']].append(align) | |
# Process groups in order of similarity | |
for similarity, group in sorted( | |
similarity_groups.items(), | |
key=lambda x: x[0], | |
reverse=True | |
): | |
# Combine aligned features | |
for align in group: | |
integrated.append({ | |
'features': { | |
**align['item1'], | |
**align['item2'] | |
}, | |
'modalities': [align['modality1'], align['modality2']], | |
'confidence': align['similarity'] | |
}) | |
return integrated | |
async def _generate_response( | |
self, | |
integration: List[Dict[str, Any]], | |
context: Dict[str, Any] | |
) -> Dict[str, Any]: | |
"""Generate coherent response from integrated analysis.""" | |
if not integration: | |
return {'text': '', 'confidence': 0.0} | |
# Combine all integrated features | |
all_features = {} | |
for item in integration: | |
all_features.update(item['features']) | |
# Generate response text | |
response_text = [] | |
# Add main findings | |
response_text.append("Main findings across modalities:") | |
for feature, value in all_features.items(): | |
response_text.append(f"- {feature}: {value}") | |
# Add confidence | |
confidence = sum(item['confidence'] for item in integration) / len(integration) | |
response_text.append(f"\nOverall confidence: {confidence:.2f}") | |
return { | |
'text': "\n".join(response_text), | |
'confidence': confidence | |
} | |
def _calculate_confidence(self, integration: List[Dict[str, Any]]) -> float: | |
"""Calculate overall confidence score.""" | |
if not integration: | |
return 0.0 | |
# Base confidence | |
confidence = 0.5 | |
# Adjust based on number of modalities | |
unique_modalities = set() | |
for item in integration: | |
unique_modalities.update(item['modalities']) | |
modality_bonus = len(unique_modalities) * 0.1 | |
confidence += min(modality_bonus, 0.3) | |
# Adjust based on integration quality | |
avg_similarity = sum( | |
item['confidence'] for item in integration | |
) / len(integration) | |
confidence += avg_similarity * 0.2 | |
return min(confidence, 1.0) | |
def _process_text(self, text: str) -> List[Dict[str, Any]]: | |
"""Process text modality.""" | |
# Simple text processing for now | |
return [{'text': text}] | |
def _process_images(self, images: List[str]) -> List[Dict[str, Any]]: | |
"""Process image modality.""" | |
# Simple image processing for now | |
return [{'image': image} for image in images] | |
def _process_audio(self, audio: List[str]) -> List[Dict[str, Any]]: | |
"""Process audio modality.""" | |
# Simple audio processing for now | |
return [{'audio': audio_file} for audio_file in audio] | |
def _process_video(self, video: List[str]) -> List[Dict[str, Any]]: | |
"""Process video modality.""" | |
# Simple video processing for now | |
return [{'video': video_file} for video_file in video] | |
def _process_structured(self, structured: Dict[str, Any]) -> List[Dict[str, Any]]: | |
"""Process structured data modality.""" | |
# Simple structured data processing for now | |
return [{'structured': structured}] | |