Spaces:
Runtime error
Runtime error
""" | |
Quantum Learning System | |
--------------------- | |
Implements quantum-inspired learning algorithms for enhanced pattern recognition | |
and optimization. | |
""" | |
from typing import Dict, Any, List, Optional, Tuple | |
from dataclasses import dataclass, field | |
from enum import Enum | |
import numpy as np | |
from datetime import datetime | |
class PatternType(Enum): | |
"""Types of quantum learning patterns.""" | |
SUPERPOSITION = "superposition" | |
ENTANGLEMENT = "entanglement" | |
INTERFERENCE = "interference" | |
TUNNELING = "tunneling" | |
ANNEALING = "annealing" | |
class Pattern: | |
"""Quantum pattern representation.""" | |
type: PatternType | |
amplitude: complex | |
phase: float | |
entanglement_partners: List[str] | |
interference_score: float | |
metadata: Dict[str, Any] = field(default_factory=dict) | |
timestamp: datetime = field(default_factory=datetime.now) | |
class QuantumLearningSystem: | |
""" | |
Advanced quantum-inspired learning system that: | |
1. Uses quantum superposition for parallel pattern matching | |
2. Leverages quantum entanglement for correlated learning | |
3. Applies quantum interference for optimization | |
4. Implements quantum tunneling for escaping local optima | |
5. Uses quantum annealing for global optimization | |
""" | |
def __init__(self, config: Optional[Dict[str, Any]] = None): | |
"""Initialize quantum learning system.""" | |
self.config = config or {} | |
# Quantum system parameters | |
self.num_qubits = self.config.get('num_qubits', 8) | |
self.entanglement_strength = self.config.get('entanglement_strength', 0.5) | |
self.interference_threshold = self.config.get('interference_threshold', 0.3) | |
self.tunneling_rate = self.config.get('tunneling_rate', 0.1) | |
self.annealing_schedule = self.config.get('annealing_schedule', { | |
'initial_temp': 1.0, | |
'final_temp': 0.01, | |
'steps': 100, | |
'cooling_rate': 0.95 | |
}) | |
# Standard reasoning parameters | |
self.min_confidence = self.config.get('min_confidence', 0.7) | |
self.parallel_threshold = self.config.get('parallel_threshold', 3) | |
self.learning_rate = self.config.get('learning_rate', 0.1) | |
self.strategy_weights = self.config.get('strategy_weights', { | |
"LOCAL_LLM": 0.8, | |
"CHAIN_OF_THOUGHT": 0.6, | |
"TREE_OF_THOUGHTS": 0.5, | |
"META_LEARNING": 0.4 | |
}) | |
# Initialize quantum state | |
self.state = np.zeros((2**self.num_qubits,), dtype=complex) | |
self.state[0] = 1.0 # Initialize to |0⟩ state | |
# Pattern storage | |
self.patterns: Dict[str, Pattern] = {} | |
self.entanglement_graph: Dict[str, List[str]] = {} | |
# Performance tracking | |
self.interference_history: List[float] = [] | |
self.tunneling_events: List[Dict[str, Any]] = [] | |
self.optimization_trace: List[float] = [] | |
def create_superposition(self, patterns: List[Pattern]) -> np.ndarray: | |
"""Create quantum superposition of patterns.""" | |
n_patterns = len(patterns) | |
amplitude = 1.0 / np.sqrt(n_patterns) | |
superposition = np.zeros_like(self.state) | |
for i, pattern in enumerate(patterns): | |
# Convert pattern to quantum state | |
pattern_state = self._pattern_to_quantum_state(pattern) | |
# Add to superposition with equal amplitude | |
superposition += amplitude * pattern_state | |
return superposition | |
def apply_entanglement(self, pattern1: Pattern, pattern2: Pattern) -> Tuple[Pattern, Pattern]: | |
"""Apply quantum entanglement between patterns.""" | |
# Create entanglement between patterns | |
if self.entanglement_strength > np.random.random(): | |
pattern1.entanglement_partners.append(pattern2.type.value) | |
pattern2.entanglement_partners.append(pattern1.type.value) | |
# Update entanglement graph | |
self.entanglement_graph.setdefault(pattern1.type.value, []).append(pattern2.type.value) | |
self.entanglement_graph.setdefault(pattern2.type.value, []).append(pattern1.type.value) | |
# Modify pattern properties based on entanglement | |
shared_phase = (pattern1.phase + pattern2.phase) / 2 | |
pattern1.phase = pattern2.phase = shared_phase | |
return pattern1, pattern2 | |
def measure_interference(self, patterns: List[Pattern]) -> float: | |
"""Measure quantum interference between patterns.""" | |
total_interference = 0.0 | |
for i, p1 in enumerate(patterns): | |
for p2 in patterns[i+1:]: | |
# Calculate interference based on phase difference | |
phase_diff = abs(p1.phase - p2.phase) | |
interference = np.cos(phase_diff) * abs(p1.amplitude * p2.amplitude) | |
# Update interference scores | |
p1.interference_score = p2.interference_score = interference | |
total_interference += interference | |
self.interference_history.append(total_interference) | |
return total_interference | |
def quantum_tunneling(self, pattern: Pattern, energy_landscape: Dict[str, float]) -> Pattern: | |
"""Apply quantum tunneling to escape local optima.""" | |
current_energy = energy_landscape.get(pattern.type.value, float('inf')) | |
# Attempt tunneling with probability based on tunneling rate | |
if np.random.random() < self.tunneling_rate: | |
# Find neighboring states | |
neighbors = self._find_neighboring_states(pattern) | |
for neighbor in neighbors: | |
neighbor_energy = energy_landscape.get(neighbor.type.value, float('inf')) | |
# Tunnel if found lower energy state | |
if neighbor_energy < current_energy: | |
self.tunneling_events.append({ | |
"from_state": pattern.type.value, | |
"to_state": neighbor.type.value, | |
"energy_delta": neighbor_energy - current_energy, | |
"timestamp": datetime.now().isoformat() | |
}) | |
return neighbor | |
return pattern | |
def quantum_annealing(self, | |
initial_pattern: Pattern, | |
cost_function: callable, | |
num_steps: int = 1000) -> Pattern: | |
"""Perform quantum annealing optimization.""" | |
current_pattern = initial_pattern | |
current_cost = cost_function(current_pattern) | |
temperature = self.annealing_schedule["initial_temp"] | |
for step in range(num_steps): | |
# Generate neighbor pattern | |
neighbor = self._generate_neighbor_pattern(current_pattern) | |
neighbor_cost = cost_function(neighbor) | |
# Calculate acceptance probability | |
delta_cost = neighbor_cost - current_cost | |
if delta_cost < 0 or np.random.random() < np.exp(-delta_cost / temperature): | |
current_pattern = neighbor | |
current_cost = neighbor_cost | |
# Update temperature | |
temperature *= self.annealing_schedule["cooling_rate"] | |
self.optimization_trace.append(current_cost) | |
# Stop if temperature is too low | |
if temperature < self.annealing_schedule["final_temp"]: | |
break | |
return current_pattern | |
def _pattern_to_quantum_state(self, pattern: Pattern) -> np.ndarray: | |
"""Convert pattern to quantum state representation.""" | |
# Create basis state based on pattern type | |
basis_state = np.zeros_like(self.state) | |
state_index = hash(pattern.type.value) % (2**self.num_qubits) | |
basis_state[state_index] = 1.0 | |
# Apply amplitude and phase | |
return pattern.amplitude * np.exp(1j * pattern.phase) * basis_state | |
def _find_neighboring_states(self, pattern: Pattern) -> List[Pattern]: | |
"""Find neighboring quantum states for tunneling.""" | |
neighbors = [] | |
current_type_index = list(PatternType).index(pattern.type) | |
# Consider adjacent pattern types as neighbors | |
for i in [-1, 1]: | |
try: | |
neighbor_type = list(PatternType)[current_type_index + i] | |
neighbor = Pattern( | |
type=neighbor_type, | |
amplitude=pattern.amplitude, | |
phase=pattern.phase + np.random.normal(0, 0.1), | |
entanglement_partners=pattern.entanglement_partners.copy(), | |
interference_score=pattern.interference_score | |
) | |
neighbors.append(neighbor) | |
except IndexError: | |
continue | |
return neighbors | |
def _generate_neighbor_pattern(self, pattern: Pattern) -> Pattern: | |
"""Generate neighboring pattern for annealing.""" | |
return Pattern( | |
type=pattern.type, | |
amplitude=pattern.amplitude + np.random.normal(0, 0.1), | |
phase=pattern.phase + np.random.normal(0, 0.1), | |
entanglement_partners=pattern.entanglement_partners.copy(), | |
interference_score=pattern.interference_score, | |
metadata=pattern.metadata.copy() | |
) | |
def get_optimization_statistics(self) -> Dict[str, Any]: | |
"""Get statistics about the optimization process.""" | |
return { | |
"interference_history": self.interference_history, | |
"tunneling_events": self.tunneling_events, | |
"optimization_trace": self.optimization_trace, | |
"entanglement_graph": self.entanglement_graph | |
} | |
def reset_system(self): | |
"""Reset the quantum learning system.""" | |
self.state = np.zeros((2**self.num_qubits,), dtype=complex) | |
self.state[0] = 1.0 | |
self.patterns.clear() | |
self.entanglement_graph.clear() | |
self.interference_history.clear() | |
self.tunneling_events.clear() | |
self.optimization_trace.clear() | |