File size: 10,254 Bytes
46ce865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef1144
46ce865
3ef1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46ce865
 
3ef1144
46ce865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
"""
Quantum Learning System
---------------------
Implements quantum-inspired learning algorithms for enhanced pattern recognition
and optimization.
"""

from typing import Dict, Any, List, Optional, Tuple
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
from datetime import datetime

class PatternType(Enum):
    """Types of quantum learning patterns."""
    SUPERPOSITION = "superposition"
    ENTANGLEMENT = "entanglement"
    INTERFERENCE = "interference"
    TUNNELING = "tunneling"
    ANNEALING = "annealing"

@dataclass
class Pattern:
    """Quantum pattern representation."""
    type: PatternType
    amplitude: complex
    phase: float
    entanglement_partners: List[str]
    interference_score: float
    metadata: Dict[str, Any] = field(default_factory=dict)
    timestamp: datetime = field(default_factory=datetime.now)

class QuantumLearningSystem:
    """
    Advanced quantum-inspired learning system that:
    1. Uses quantum superposition for parallel pattern matching
    2. Leverages quantum entanglement for correlated learning
    3. Applies quantum interference for optimization
    4. Implements quantum tunneling for escaping local optima
    5. Uses quantum annealing for global optimization
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize quantum learning system."""
        self.config = config or {}
        
        # Quantum system parameters
        self.num_qubits = self.config.get('num_qubits', 8)
        self.entanglement_strength = self.config.get('entanglement_strength', 0.5)
        self.interference_threshold = self.config.get('interference_threshold', 0.3)
        self.tunneling_rate = self.config.get('tunneling_rate', 0.1)
        self.annealing_schedule = self.config.get('annealing_schedule', {
            'initial_temp': 1.0,
            'final_temp': 0.01,
            'steps': 100,
            'cooling_rate': 0.95
        })
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Initialize quantum state
        self.state = np.zeros((2**self.num_qubits,), dtype=complex)
        self.state[0] = 1.0  # Initialize to |0⟩ state
        
        # Pattern storage
        self.patterns: Dict[str, Pattern] = {}
        self.entanglement_graph: Dict[str, List[str]] = {}
        
        # Performance tracking
        self.interference_history: List[float] = []
        self.tunneling_events: List[Dict[str, Any]] = []
        self.optimization_trace: List[float] = []
    
    def create_superposition(self, patterns: List[Pattern]) -> np.ndarray:
        """Create quantum superposition of patterns."""
        n_patterns = len(patterns)
        amplitude = 1.0 / np.sqrt(n_patterns)
        
        superposition = np.zeros_like(self.state)
        for i, pattern in enumerate(patterns):
            # Convert pattern to quantum state
            pattern_state = self._pattern_to_quantum_state(pattern)
            # Add to superposition with equal amplitude
            superposition += amplitude * pattern_state
            
        return superposition
    
    def apply_entanglement(self, pattern1: Pattern, pattern2: Pattern) -> Tuple[Pattern, Pattern]:
        """Apply quantum entanglement between patterns."""
        # Create entanglement between patterns
        if self.entanglement_strength > np.random.random():
            pattern1.entanglement_partners.append(pattern2.type.value)
            pattern2.entanglement_partners.append(pattern1.type.value)
            
            # Update entanglement graph
            self.entanglement_graph.setdefault(pattern1.type.value, []).append(pattern2.type.value)
            self.entanglement_graph.setdefault(pattern2.type.value, []).append(pattern1.type.value)
            
            # Modify pattern properties based on entanglement
            shared_phase = (pattern1.phase + pattern2.phase) / 2
            pattern1.phase = pattern2.phase = shared_phase
            
        return pattern1, pattern2
    
    def measure_interference(self, patterns: List[Pattern]) -> float:
        """Measure quantum interference between patterns."""
        total_interference = 0.0
        
        for i, p1 in enumerate(patterns):
            for p2 in patterns[i+1:]:
                # Calculate interference based on phase difference
                phase_diff = abs(p1.phase - p2.phase)
                interference = np.cos(phase_diff) * abs(p1.amplitude * p2.amplitude)
                
                # Update interference scores
                p1.interference_score = p2.interference_score = interference
                total_interference += interference
        
        self.interference_history.append(total_interference)
        return total_interference
    
    def quantum_tunneling(self, pattern: Pattern, energy_landscape: Dict[str, float]) -> Pattern:
        """Apply quantum tunneling to escape local optima."""
        current_energy = energy_landscape.get(pattern.type.value, float('inf'))
        
        # Attempt tunneling with probability based on tunneling rate
        if np.random.random() < self.tunneling_rate:
            # Find neighboring states
            neighbors = self._find_neighboring_states(pattern)
            
            for neighbor in neighbors:
                neighbor_energy = energy_landscape.get(neighbor.type.value, float('inf'))
                
                # Tunnel if found lower energy state
                if neighbor_energy < current_energy:
                    self.tunneling_events.append({
                        "from_state": pattern.type.value,
                        "to_state": neighbor.type.value,
                        "energy_delta": neighbor_energy - current_energy,
                        "timestamp": datetime.now().isoformat()
                    })
                    return neighbor
        
        return pattern
    
    def quantum_annealing(self, 
                         initial_pattern: Pattern,
                         cost_function: callable,
                         num_steps: int = 1000) -> Pattern:
        """Perform quantum annealing optimization."""
        current_pattern = initial_pattern
        current_cost = cost_function(current_pattern)
        temperature = self.annealing_schedule["initial_temp"]
        
        for step in range(num_steps):
            # Generate neighbor pattern
            neighbor = self._generate_neighbor_pattern(current_pattern)
            neighbor_cost = cost_function(neighbor)
            
            # Calculate acceptance probability
            delta_cost = neighbor_cost - current_cost
            if delta_cost < 0 or np.random.random() < np.exp(-delta_cost / temperature):
                current_pattern = neighbor
                current_cost = neighbor_cost
            
            # Update temperature
            temperature *= self.annealing_schedule["cooling_rate"]
            self.optimization_trace.append(current_cost)
            
            # Stop if temperature is too low
            if temperature < self.annealing_schedule["final_temp"]:
                break
        
        return current_pattern
    
    def _pattern_to_quantum_state(self, pattern: Pattern) -> np.ndarray:
        """Convert pattern to quantum state representation."""
        # Create basis state based on pattern type
        basis_state = np.zeros_like(self.state)
        state_index = hash(pattern.type.value) % (2**self.num_qubits)
        basis_state[state_index] = 1.0
        
        # Apply amplitude and phase
        return pattern.amplitude * np.exp(1j * pattern.phase) * basis_state
    
    def _find_neighboring_states(self, pattern: Pattern) -> List[Pattern]:
        """Find neighboring quantum states for tunneling."""
        neighbors = []
        current_type_index = list(PatternType).index(pattern.type)
        
        # Consider adjacent pattern types as neighbors
        for i in [-1, 1]:
            try:
                neighbor_type = list(PatternType)[current_type_index + i]
                neighbor = Pattern(
                    type=neighbor_type,
                    amplitude=pattern.amplitude,
                    phase=pattern.phase + np.random.normal(0, 0.1),
                    entanglement_partners=pattern.entanglement_partners.copy(),
                    interference_score=pattern.interference_score
                )
                neighbors.append(neighbor)
            except IndexError:
                continue
        
        return neighbors
    
    def _generate_neighbor_pattern(self, pattern: Pattern) -> Pattern:
        """Generate neighboring pattern for annealing."""
        return Pattern(
            type=pattern.type,
            amplitude=pattern.amplitude + np.random.normal(0, 0.1),
            phase=pattern.phase + np.random.normal(0, 0.1),
            entanglement_partners=pattern.entanglement_partners.copy(),
            interference_score=pattern.interference_score,
            metadata=pattern.metadata.copy()
        )
    
    def get_optimization_statistics(self) -> Dict[str, Any]:
        """Get statistics about the optimization process."""
        return {
            "interference_history": self.interference_history,
            "tunneling_events": self.tunneling_events,
            "optimization_trace": self.optimization_trace,
            "entanglement_graph": self.entanglement_graph
        }
    
    def reset_system(self):
        """Reset the quantum learning system."""
        self.state = np.zeros((2**self.num_qubits,), dtype=complex)
        self.state[0] = 1.0
        self.patterns.clear()
        self.entanglement_graph.clear()
        self.interference_history.clear()
        self.tunneling_events.clear()
        self.optimization_trace.clear()