File size: 26,940 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea5c9a
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea5c9a
1671ec3
 
 
 
 
 
9ea5c9a
 
 
1671ec3
9ea5c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
"""Specialized strategies for autonomous business and revenue generation."""

import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict

from .base import ReasoningStrategy

class VentureType(Enum):
    """Types of business ventures."""
    AI_STARTUP = "ai_startup"
    SAAS = "saas"
    API_SERVICE = "api_service"
    DATA_ANALYTICS = "data_analytics"
    AUTOMATION_SERVICE = "automation_service"
    CONSULTING = "consulting"
    DIGITAL_PRODUCTS = "digital_products"
    MARKETPLACE = "marketplace"

class RevenueStream(Enum):
    """Types of revenue streams."""
    SUBSCRIPTION = "subscription"
    USAGE_BASED = "usage_based"
    LICENSING = "licensing"
    CONSULTING = "consulting"
    PRODUCT_SALES = "product_sales"
    COMMISSION = "commission"
    ADVERTISING = "advertising"
    PARTNERSHIP = "partnership"

@dataclass
class VentureMetrics:
    """Key business metrics."""
    revenue: float
    profit_margin: float
    customer_acquisition_cost: float
    lifetime_value: float
    churn_rate: float
    growth_rate: float
    burn_rate: float
    runway_months: float
    roi: float

@dataclass
class MarketOpportunity:
    """Market opportunity analysis."""
    market_size: float
    growth_potential: float
    competition_level: float
    entry_barriers: float
    regulatory_risks: float
    technology_risks: float
    monetization_potential: float

class AIStartupStrategy(ReasoningStrategy):
    """
    Advanced AI startup strategy that:
    1. Identifies profitable AI applications
    2. Analyzes market opportunities
    3. Develops MVP strategies
    4. Plans scaling approaches
    5. Optimizes revenue streams
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate AI startup strategy."""
        try:
            # Market analysis
            market = await self._analyze_market(query, context)
            
            # Technology assessment
            tech = await self._assess_technology(market, context)
            
            # Business model
            model = await self._develop_business_model(tech, context)
            
            # Growth strategy
            strategy = await self._create_growth_strategy(model, context)
            
            # Financial projections
            projections = await self._project_financials(strategy, context)
            
            return {
                "success": projections["annual_profit"] >= 1_000_000,
                "market_analysis": market,
                "tech_assessment": tech,
                "business_model": model,
                "growth_strategy": strategy,
                "financials": projections,
                "confidence": self._calculate_confidence(projections)
            }
        except Exception as e:
            logging.error(f"Error in AI startup strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class SaaSVentureStrategy(ReasoningStrategy):
    """
    Advanced SaaS venture strategy that:
    1. Identifies scalable SaaS opportunities
    2. Develops pricing strategies
    3. Plans customer acquisition
    4. Optimizes retention
    5. Maximizes recurring revenue
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate SaaS venture strategy."""
        try:
            # Opportunity analysis
            opportunity = await self._analyze_opportunity(query, context)
            
            # Product strategy
            product = await self._develop_product_strategy(opportunity, context)
            
            # Pricing model
            pricing = await self._create_pricing_model(product, context)
            
            # Growth plan
            growth = await self._plan_growth(pricing, context)
            
            # Revenue projections
            projections = await self._project_revenue(growth, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "pricing": pricing,
                "growth": growth,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in SaaS venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class AutomationVentureStrategy(ReasoningStrategy):
    """
    Advanced automation venture strategy that:
    1. Identifies automation opportunities
    2. Analyzes cost-saving potential
    3. Develops automation solutions
    4. Plans implementation
    5. Maximizes ROI
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate automation venture strategy."""
        try:
            # Opportunity identification
            opportunities = await self._identify_opportunities(query, context)
            
            # Solution development
            solutions = await self._develop_solutions(opportunities, context)
            
            # Implementation strategy
            implementation = await self._create_implementation_strategy(solutions, context)
            
            # ROI analysis
            roi = await self._analyze_roi(implementation, context)
            
            # Scale strategy
            scale = await self._create_scale_strategy(roi, context)
            
            return {
                "success": roi["annual_profit"] >= 1_000_000,
                "opportunities": opportunities,
                "solutions": solutions,
                "implementation": implementation,
                "roi": roi,
                "scale": scale
            }
        except Exception as e:
            logging.error(f"Error in automation venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class DataVentureStrategy(ReasoningStrategy):
    """
    Advanced data venture strategy that:
    1. Identifies valuable data opportunities
    2. Develops data products
    3. Creates monetization strategies
    4. Ensures compliance
    5. Maximizes data value
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate data venture strategy."""
        try:
            # Data opportunity analysis
            opportunity = await self._analyze_data_opportunity(query, context)
            
            # Product development
            product = await self._develop_data_product(opportunity, context)
            
            # Monetization strategy
            monetization = await self._create_monetization_strategy(product, context)
            
            # Compliance plan
            compliance = await self._ensure_compliance(monetization, context)
            
            # Scale plan
            scale = await self._plan_scaling(compliance, context)
            
            return {
                "success": monetization["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "monetization": monetization,
                "compliance": compliance,
                "scale": scale
            }
        except Exception as e:
            logging.error(f"Error in data venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class APIVentureStrategy(ReasoningStrategy):
    """
    Advanced API venture strategy that:
    1. Identifies API opportunities
    2. Develops API products
    3. Creates pricing models
    4. Plans scaling
    5. Maximizes API value
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate API venture strategy."""
        try:
            # API opportunity analysis
            opportunity = await self._analyze_api_opportunity(query, context)
            
            # Product development
            product = await self._develop_api_product(opportunity, context)
            
            # Pricing strategy
            pricing = await self._create_api_pricing(product, context)
            
            # Scale strategy
            scale = await self._plan_api_scaling(pricing, context)
            
            # Revenue projections
            projections = await self._project_api_revenue(scale, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "product": product,
                "pricing": pricing,
                "scale": scale,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in API venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class MarketplaceVentureStrategy(ReasoningStrategy):
    """
    Advanced marketplace venture strategy that:
    1. Identifies marketplace opportunities
    2. Develops platform strategy
    3. Plans liquidity generation
    4. Optimizes matching
    5. Maximizes transaction value
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate marketplace venture strategy."""
        try:
            # Opportunity analysis
            opportunity = await self._analyze_marketplace_opportunity(query, context)
            
            # Platform strategy
            platform = await self._develop_platform_strategy(opportunity, context)
            
            # Liquidity strategy
            liquidity = await self._create_liquidity_strategy(platform, context)
            
            # Growth strategy
            growth = await self._plan_marketplace_growth(liquidity, context)
            
            # Revenue projections
            projections = await self._project_marketplace_revenue(growth, context)
            
            return {
                "success": projections["annual_revenue"] >= 1_000_000,
                "opportunity": opportunity,
                "platform": platform,
                "liquidity": liquidity,
                "growth": growth,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in marketplace venture strategy: {str(e)}")
            return {"success": False, "error": str(e)}

class VenturePortfolioStrategy(ReasoningStrategy):
    """
    Advanced venture portfolio strategy that:
    1. Optimizes venture mix
    2. Balances risk-reward
    3. Allocates resources
    4. Manages dependencies
    5. Maximizes portfolio value
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Generate venture portfolio strategy."""
        try:
            # Portfolio analysis
            analysis = await self._analyze_portfolio(query, context)
            
            # Venture selection
            selection = await self._select_ventures(analysis, context)
            
            # Resource allocation
            allocation = await self._allocate_resources(selection, context)
            
            # Risk management
            risk = await self._manage_risk(allocation, context)
            
            # Portfolio projections
            projections = await self._project_portfolio(risk, context)
            
            return {
                "success": projections["annual_profit"] >= 1_000_000,
                "analysis": analysis,
                "selection": selection,
                "allocation": allocation,
                "risk": risk,
                "projections": projections
            }
        except Exception as e:
            logging.error(f"Error in venture portfolio strategy: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """Analyze potential venture portfolio."""
        prompt = f"""
        Analyze venture portfolio opportunities:
        Query: {query}
        Context: {json.dumps(context)}
        
        Consider:
        1. Market opportunities
        2. Technology trends
        3. Resource requirements
        4. Risk factors
        5. Synergy potential
        
        Format as:
        [Analysis]
        Opportunities: ...
        Trends: ...
        Resources: ...
        Risks: ...
        Synergies: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_portfolio_analysis(response["answer"])

    def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
        """Parse portfolio analysis from response."""
        analysis = {
            "opportunities": [],
            "trends": [],
            "resources": {},
            "risks": [],
            "synergies": []
        }
        
        current_section = None
        for line in response.split('\n'):
            line = line.strip()
            if line.startswith('Opportunities:'):
                current_section = "opportunities"
            elif line.startswith('Trends:'):
                current_section = "trends"
            elif line.startswith('Resources:'):
                current_section = "resources"
            elif line.startswith('Risks:'):
                current_section = "risks"
            elif line.startswith('Synergies:'):
                current_section = "synergies"
            elif current_section and line:
                if current_section == "resources":
                    try:
                        key, value = line.split(':')
                        analysis[current_section][key.strip()] = value.strip()
                    except:
                        pass
                else:
                    analysis[current_section].append(line)
        
        return analysis

    def get_venture_metrics(self) -> Dict[str, Any]:
        """Get comprehensive venture metrics."""
        return {
            "portfolio_metrics": {
                "total_ventures": len(self.ventures),
                "profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
                "total_revenue": sum(v.metrics.revenue for v in self.ventures),
                "average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
                "portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
            },
            "market_metrics": {
                "total_market_size": sum(v.opportunity.market_size for v in self.ventures),
                "average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
                "risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
            },
            "performance_metrics": {
                "customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
                "lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
                "churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
                "burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
            }
        }

class VentureStrategy(ReasoningStrategy):
    """
    Advanced venture strategy that combines multiple specialized strategies
    to generate comprehensive business plans and recommendations.
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize venture strategy with component strategies."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Initialize component strategies with shared config
        strategy_config = {
            'min_confidence': self.min_confidence,
            'parallel_threshold': self.parallel_threshold,
            'learning_rate': self.learning_rate,
            'strategy_weights': self.strategy_weights
        }
        
        self.strategies = {
            VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
            VentureType.SAAS: SaaSVentureStrategy(strategy_config),
            VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
            VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
            VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
            VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
        }
        
        # Portfolio strategy for multi-venture optimization
        self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate venture strategy based on query and context.
        
        Args:
            query: The venture strategy query
            context: Additional context and parameters
            
        Returns:
            Dict containing venture strategy and confidence scores
        """
        try:
            # Determine venture type from query/context
            venture_type = self._determine_venture_type(query, context)
            
            # Get strategy for venture type
            strategy = self.strategies.get(venture_type)
            if not strategy:
                raise ValueError(f"Unsupported venture type: {venture_type}")
            
            # Generate strategy
            strategy_result = await strategy.reason(query, context)
            
            # Get portfolio analysis
            portfolio_result = await self.portfolio_strategy.reason(query, context)
            
            # Combine results
            combined_result = self._combine_results(
                strategy_result,
                portfolio_result,
                venture_type
            )
            
            return {
                'answer': self._format_strategy(combined_result),
                'confidence': combined_result.get('confidence', 0.0),
                'venture_type': venture_type.value,
                'strategy': strategy_result,
                'portfolio_analysis': portfolio_result
            }
            
        except Exception as e:
            logging.error(f"Venture strategy generation failed: {str(e)}")
            return {
                'error': f"Venture strategy generation failed: {str(e)}",
                'confidence': 0.0
            }
    
    def _determine_venture_type(self, query: str, context: Dict[str, Any]) -> VentureType:
        """Determine venture type from query and context."""
        # Use context if available
        if 'venture_type' in context:
            return VentureType(context['venture_type'])
        
        # Simple keyword matching
        query_lower = query.lower()
        if any(term in query_lower for term in ['ai', 'ml', 'model', 'neural']):
            return VentureType.AI_STARTUP
        elif any(term in query_lower for term in ['saas', 'software', 'cloud']):
            return VentureType.SAAS
        elif any(term in query_lower for term in ['automate', 'automation', 'workflow']):
            return VentureType.AUTOMATION_SERVICE
        elif any(term in query_lower for term in ['data', 'analytics', 'insights']):
            return VentureType.DATA_ANALYTICS
        elif any(term in query_lower for term in ['api', 'service', 'endpoint']):
            return VentureType.API_SERVICE
        elif any(term in query_lower for term in ['marketplace', 'platform', 'network']):
            return VentureType.MARKETPLACE
        
        # Default to AI startup if unclear
        return VentureType.AI_STARTUP
    
    def _combine_results(
        self,
        strategy_result: Dict[str, Any],
        portfolio_result: Dict[str, Any],
        venture_type: VentureType
    ) -> Dict[str, Any]:
        """Combine strategy and portfolio results."""
        return {
            'venture_type': venture_type.value,
            'strategy': strategy_result.get('strategy', {}),
            'metrics': strategy_result.get('metrics', {}),
            'portfolio_fit': portfolio_result.get('portfolio_fit', {}),
            'recommendations': strategy_result.get('recommendations', []),
            'confidence': min(
                strategy_result.get('confidence', 0.0),
                portfolio_result.get('confidence', 0.0)
            )
        }
    
    def _format_strategy(self, result: Dict[str, Any]) -> str:
        """Format venture strategy into readable text."""
        sections = []
        
        # Venture type
        sections.append(f"Venture Type: {result['venture_type'].replace('_', ' ').title()}")
        
        # Strategy overview
        if 'strategy' in result:
            strategy = result['strategy']
            sections.append("\nStrategy Overview:")
            for key, value in strategy.items():
                sections.append(f"- {key.replace('_', ' ').title()}: {value}")
        
        # Key metrics
        if 'metrics' in result:
            metrics = result['metrics']
            sections.append("\nKey Metrics:")
            for key, value in metrics.items():
                if isinstance(value, (int, float)):
                    sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
                else:
                    sections.append(f"- {key.replace('_', ' ').title()}: {value}")
        
        # Portfolio fit
        if 'portfolio_fit' in result:
            fit = result['portfolio_fit']
            sections.append("\nPortfolio Analysis:")
            for key, value in fit.items():
                sections.append(f"- {key.replace('_', ' ').title()}: {value}")
        
        # Recommendations
        if 'recommendations' in result:
            recs = result['recommendations']
            sections.append("\nKey Recommendations:")
            for rec in recs:
                sections.append(f"- {rec}")
        
        return "\n".join(sections)