Spaces:
Runtime error
Runtime error
File size: 26,940 Bytes
dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 1671ec3 dcb2a99 9ea5c9a 1671ec3 9ea5c9a 1671ec3 9ea5c9a 1671ec3 9ea5c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
"""Specialized strategies for autonomous business and revenue generation."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
class VentureType(Enum):
"""Types of business ventures."""
AI_STARTUP = "ai_startup"
SAAS = "saas"
API_SERVICE = "api_service"
DATA_ANALYTICS = "data_analytics"
AUTOMATION_SERVICE = "automation_service"
CONSULTING = "consulting"
DIGITAL_PRODUCTS = "digital_products"
MARKETPLACE = "marketplace"
class RevenueStream(Enum):
"""Types of revenue streams."""
SUBSCRIPTION = "subscription"
USAGE_BASED = "usage_based"
LICENSING = "licensing"
CONSULTING = "consulting"
PRODUCT_SALES = "product_sales"
COMMISSION = "commission"
ADVERTISING = "advertising"
PARTNERSHIP = "partnership"
@dataclass
class VentureMetrics:
"""Key business metrics."""
revenue: float
profit_margin: float
customer_acquisition_cost: float
lifetime_value: float
churn_rate: float
growth_rate: float
burn_rate: float
runway_months: float
roi: float
@dataclass
class MarketOpportunity:
"""Market opportunity analysis."""
market_size: float
growth_potential: float
competition_level: float
entry_barriers: float
regulatory_risks: float
technology_risks: float
monetization_potential: float
class AIStartupStrategy(ReasoningStrategy):
"""
Advanced AI startup strategy that:
1. Identifies profitable AI applications
2. Analyzes market opportunities
3. Develops MVP strategies
4. Plans scaling approaches
5. Optimizes revenue streams
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate AI startup strategy."""
try:
# Market analysis
market = await self._analyze_market(query, context)
# Technology assessment
tech = await self._assess_technology(market, context)
# Business model
model = await self._develop_business_model(tech, context)
# Growth strategy
strategy = await self._create_growth_strategy(model, context)
# Financial projections
projections = await self._project_financials(strategy, context)
return {
"success": projections["annual_profit"] >= 1_000_000,
"market_analysis": market,
"tech_assessment": tech,
"business_model": model,
"growth_strategy": strategy,
"financials": projections,
"confidence": self._calculate_confidence(projections)
}
except Exception as e:
logging.error(f"Error in AI startup strategy: {str(e)}")
return {"success": False, "error": str(e)}
class SaaSVentureStrategy(ReasoningStrategy):
"""
Advanced SaaS venture strategy that:
1. Identifies scalable SaaS opportunities
2. Develops pricing strategies
3. Plans customer acquisition
4. Optimizes retention
5. Maximizes recurring revenue
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate SaaS venture strategy."""
try:
# Opportunity analysis
opportunity = await self._analyze_opportunity(query, context)
# Product strategy
product = await self._develop_product_strategy(opportunity, context)
# Pricing model
pricing = await self._create_pricing_model(product, context)
# Growth plan
growth = await self._plan_growth(pricing, context)
# Revenue projections
projections = await self._project_revenue(growth, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"pricing": pricing,
"growth": growth,
"projections": projections
}
except Exception as e:
logging.error(f"Error in SaaS venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class AutomationVentureStrategy(ReasoningStrategy):
"""
Advanced automation venture strategy that:
1. Identifies automation opportunities
2. Analyzes cost-saving potential
3. Develops automation solutions
4. Plans implementation
5. Maximizes ROI
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate automation venture strategy."""
try:
# Opportunity identification
opportunities = await self._identify_opportunities(query, context)
# Solution development
solutions = await self._develop_solutions(opportunities, context)
# Implementation strategy
implementation = await self._create_implementation_strategy(solutions, context)
# ROI analysis
roi = await self._analyze_roi(implementation, context)
# Scale strategy
scale = await self._create_scale_strategy(roi, context)
return {
"success": roi["annual_profit"] >= 1_000_000,
"opportunities": opportunities,
"solutions": solutions,
"implementation": implementation,
"roi": roi,
"scale": scale
}
except Exception as e:
logging.error(f"Error in automation venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class DataVentureStrategy(ReasoningStrategy):
"""
Advanced data venture strategy that:
1. Identifies valuable data opportunities
2. Develops data products
3. Creates monetization strategies
4. Ensures compliance
5. Maximizes data value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate data venture strategy."""
try:
# Data opportunity analysis
opportunity = await self._analyze_data_opportunity(query, context)
# Product development
product = await self._develop_data_product(opportunity, context)
# Monetization strategy
monetization = await self._create_monetization_strategy(product, context)
# Compliance plan
compliance = await self._ensure_compliance(monetization, context)
# Scale plan
scale = await self._plan_scaling(compliance, context)
return {
"success": monetization["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"monetization": monetization,
"compliance": compliance,
"scale": scale
}
except Exception as e:
logging.error(f"Error in data venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class APIVentureStrategy(ReasoningStrategy):
"""
Advanced API venture strategy that:
1. Identifies API opportunities
2. Develops API products
3. Creates pricing models
4. Plans scaling
5. Maximizes API value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate API venture strategy."""
try:
# API opportunity analysis
opportunity = await self._analyze_api_opportunity(query, context)
# Product development
product = await self._develop_api_product(opportunity, context)
# Pricing strategy
pricing = await self._create_api_pricing(product, context)
# Scale strategy
scale = await self._plan_api_scaling(pricing, context)
# Revenue projections
projections = await self._project_api_revenue(scale, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"product": product,
"pricing": pricing,
"scale": scale,
"projections": projections
}
except Exception as e:
logging.error(f"Error in API venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class MarketplaceVentureStrategy(ReasoningStrategy):
"""
Advanced marketplace venture strategy that:
1. Identifies marketplace opportunities
2. Develops platform strategy
3. Plans liquidity generation
4. Optimizes matching
5. Maximizes transaction value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate marketplace venture strategy."""
try:
# Opportunity analysis
opportunity = await self._analyze_marketplace_opportunity(query, context)
# Platform strategy
platform = await self._develop_platform_strategy(opportunity, context)
# Liquidity strategy
liquidity = await self._create_liquidity_strategy(platform, context)
# Growth strategy
growth = await self._plan_marketplace_growth(liquidity, context)
# Revenue projections
projections = await self._project_marketplace_revenue(growth, context)
return {
"success": projections["annual_revenue"] >= 1_000_000,
"opportunity": opportunity,
"platform": platform,
"liquidity": liquidity,
"growth": growth,
"projections": projections
}
except Exception as e:
logging.error(f"Error in marketplace venture strategy: {str(e)}")
return {"success": False, "error": str(e)}
class VenturePortfolioStrategy(ReasoningStrategy):
"""
Advanced venture portfolio strategy that:
1. Optimizes venture mix
2. Balances risk-reward
3. Allocates resources
4. Manages dependencies
5. Maximizes portfolio value
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Generate venture portfolio strategy."""
try:
# Portfolio analysis
analysis = await self._analyze_portfolio(query, context)
# Venture selection
selection = await self._select_ventures(analysis, context)
# Resource allocation
allocation = await self._allocate_resources(selection, context)
# Risk management
risk = await self._manage_risk(allocation, context)
# Portfolio projections
projections = await self._project_portfolio(risk, context)
return {
"success": projections["annual_profit"] >= 1_000_000,
"analysis": analysis,
"selection": selection,
"allocation": allocation,
"risk": risk,
"projections": projections
}
except Exception as e:
logging.error(f"Error in venture portfolio strategy: {str(e)}")
return {"success": False, "error": str(e)}
async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze potential venture portfolio."""
prompt = f"""
Analyze venture portfolio opportunities:
Query: {query}
Context: {json.dumps(context)}
Consider:
1. Market opportunities
2. Technology trends
3. Resource requirements
4. Risk factors
5. Synergy potential
Format as:
[Analysis]
Opportunities: ...
Trends: ...
Resources: ...
Risks: ...
Synergies: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_portfolio_analysis(response["answer"])
def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
"""Parse portfolio analysis from response."""
analysis = {
"opportunities": [],
"trends": [],
"resources": {},
"risks": [],
"synergies": []
}
current_section = None
for line in response.split('\n'):
line = line.strip()
if line.startswith('Opportunities:'):
current_section = "opportunities"
elif line.startswith('Trends:'):
current_section = "trends"
elif line.startswith('Resources:'):
current_section = "resources"
elif line.startswith('Risks:'):
current_section = "risks"
elif line.startswith('Synergies:'):
current_section = "synergies"
elif current_section and line:
if current_section == "resources":
try:
key, value = line.split(':')
analysis[current_section][key.strip()] = value.strip()
except:
pass
else:
analysis[current_section].append(line)
return analysis
def get_venture_metrics(self) -> Dict[str, Any]:
"""Get comprehensive venture metrics."""
return {
"portfolio_metrics": {
"total_ventures": len(self.ventures),
"profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
"total_revenue": sum(v.metrics.revenue for v in self.ventures),
"average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
"portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
},
"market_metrics": {
"total_market_size": sum(v.opportunity.market_size for v in self.ventures),
"average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
"risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
},
"performance_metrics": {
"customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
"lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
"churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
"burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
}
}
class VentureStrategy(ReasoningStrategy):
"""
Advanced venture strategy that combines multiple specialized strategies
to generate comprehensive business plans and recommendations.
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize venture strategy with component strategies."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Initialize component strategies with shared config
strategy_config = {
'min_confidence': self.min_confidence,
'parallel_threshold': self.parallel_threshold,
'learning_rate': self.learning_rate,
'strategy_weights': self.strategy_weights
}
self.strategies = {
VentureType.AI_STARTUP: AIStartupStrategy(strategy_config),
VentureType.SAAS: SaaSVentureStrategy(strategy_config),
VentureType.AUTOMATION_SERVICE: AutomationVentureStrategy(strategy_config),
VentureType.DATA_ANALYTICS: DataVentureStrategy(strategy_config),
VentureType.API_SERVICE: APIVentureStrategy(strategy_config),
VentureType.MARKETPLACE: MarketplaceVentureStrategy(strategy_config)
}
# Portfolio strategy for multi-venture optimization
self.portfolio_strategy = VenturePortfolioStrategy(strategy_config)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate venture strategy based on query and context.
Args:
query: The venture strategy query
context: Additional context and parameters
Returns:
Dict containing venture strategy and confidence scores
"""
try:
# Determine venture type from query/context
venture_type = self._determine_venture_type(query, context)
# Get strategy for venture type
strategy = self.strategies.get(venture_type)
if not strategy:
raise ValueError(f"Unsupported venture type: {venture_type}")
# Generate strategy
strategy_result = await strategy.reason(query, context)
# Get portfolio analysis
portfolio_result = await self.portfolio_strategy.reason(query, context)
# Combine results
combined_result = self._combine_results(
strategy_result,
portfolio_result,
venture_type
)
return {
'answer': self._format_strategy(combined_result),
'confidence': combined_result.get('confidence', 0.0),
'venture_type': venture_type.value,
'strategy': strategy_result,
'portfolio_analysis': portfolio_result
}
except Exception as e:
logging.error(f"Venture strategy generation failed: {str(e)}")
return {
'error': f"Venture strategy generation failed: {str(e)}",
'confidence': 0.0
}
def _determine_venture_type(self, query: str, context: Dict[str, Any]) -> VentureType:
"""Determine venture type from query and context."""
# Use context if available
if 'venture_type' in context:
return VentureType(context['venture_type'])
# Simple keyword matching
query_lower = query.lower()
if any(term in query_lower for term in ['ai', 'ml', 'model', 'neural']):
return VentureType.AI_STARTUP
elif any(term in query_lower for term in ['saas', 'software', 'cloud']):
return VentureType.SAAS
elif any(term in query_lower for term in ['automate', 'automation', 'workflow']):
return VentureType.AUTOMATION_SERVICE
elif any(term in query_lower for term in ['data', 'analytics', 'insights']):
return VentureType.DATA_ANALYTICS
elif any(term in query_lower for term in ['api', 'service', 'endpoint']):
return VentureType.API_SERVICE
elif any(term in query_lower for term in ['marketplace', 'platform', 'network']):
return VentureType.MARKETPLACE
# Default to AI startup if unclear
return VentureType.AI_STARTUP
def _combine_results(
self,
strategy_result: Dict[str, Any],
portfolio_result: Dict[str, Any],
venture_type: VentureType
) -> Dict[str, Any]:
"""Combine strategy and portfolio results."""
return {
'venture_type': venture_type.value,
'strategy': strategy_result.get('strategy', {}),
'metrics': strategy_result.get('metrics', {}),
'portfolio_fit': portfolio_result.get('portfolio_fit', {}),
'recommendations': strategy_result.get('recommendations', []),
'confidence': min(
strategy_result.get('confidence', 0.0),
portfolio_result.get('confidence', 0.0)
)
}
def _format_strategy(self, result: Dict[str, Any]) -> str:
"""Format venture strategy into readable text."""
sections = []
# Venture type
sections.append(f"Venture Type: {result['venture_type'].replace('_', ' ').title()}")
# Strategy overview
if 'strategy' in result:
strategy = result['strategy']
sections.append("\nStrategy Overview:")
for key, value in strategy.items():
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Key metrics
if 'metrics' in result:
metrics = result['metrics']
sections.append("\nKey Metrics:")
for key, value in metrics.items():
if isinstance(value, (int, float)):
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
else:
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Portfolio fit
if 'portfolio_fit' in result:
fit = result['portfolio_fit']
sections.append("\nPortfolio Analysis:")
for key, value in fit.items():
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Recommendations
if 'recommendations' in result:
recs = result['recommendations']
sections.append("\nKey Recommendations:")
for rec in recs:
sections.append(f"- {rec}")
return "\n".join(sections)
|