Spaces:
Runtime error
Runtime error
File size: 21,168 Bytes
dcb2a99 1671ec3 dcb2a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 |
"""Recursive reasoning implementation with advanced decomposition and synthesis."""
import logging
from typing import Dict, Any, List, Optional, Set, Tuple, Callable
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import asyncio
from collections import defaultdict
from .base import ReasoningStrategy
class SubproblemType(Enum):
"""Types of subproblems in recursive reasoning."""
ATOMIC = "atomic"
COMPOSITE = "composite"
PARALLEL = "parallel"
SEQUENTIAL = "sequential"
CONDITIONAL = "conditional"
ITERATIVE = "iterative"
class SolutionStatus(Enum):
"""Status of subproblem solutions."""
PENDING = "pending"
IN_PROGRESS = "in_progress"
SOLVED = "solved"
FAILED = "failed"
BLOCKED = "blocked"
OPTIMIZING = "optimizing"
@dataclass
class Subproblem:
"""Represents a subproblem in recursive reasoning."""
id: str
type: SubproblemType
query: str
context: Dict[str, Any]
parent_id: Optional[str]
children: List[str]
status: SolutionStatus
solution: Optional[Dict[str, Any]]
confidence: float
dependencies: List[str]
metadata: Dict[str, Any] = field(default_factory=dict)
@dataclass
class RecursiveStep:
"""Represents a step in recursive reasoning."""
id: str
subproblem_id: str
action: str
timestamp: datetime
result: Optional[Dict[str, Any]]
metrics: Dict[str, float]
metadata: Dict[str, Any] = field(default_factory=dict)
class RecursiveReasoning(ReasoningStrategy):
"""
Advanced Recursive Reasoning implementation with:
- Dynamic problem decomposition
- Parallel subproblem solving
- Solution synthesis
- Cycle detection
- Optimization strategies
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize recursive reasoning."""
super().__init__()
self.config = config or {}
# Standard reasoning parameters
self.min_confidence = self.config.get('min_confidence', 0.7)
self.parallel_threshold = self.config.get('parallel_threshold', 3)
self.learning_rate = self.config.get('learning_rate', 0.1)
self.strategy_weights = self.config.get('strategy_weights', {
"LOCAL_LLM": 0.8,
"CHAIN_OF_THOUGHT": 0.6,
"TREE_OF_THOUGHTS": 0.5,
"META_LEARNING": 0.4
})
# Recursive reasoning specific parameters
self.max_depth = self.config.get('max_depth', 5)
self.optimization_rounds = self.config.get('optimization_rounds', 2)
# Problem tracking
self.subproblems: Dict[str, Subproblem] = {}
self.steps: List[RecursiveStep] = []
self.solution_cache: Dict[str, Dict[str, Any]] = {}
self.cycle_detection: Set[str] = set()
# Performance metrics
self.depth_distribution: Dict[int, int] = defaultdict(int)
self.type_distribution: Dict[SubproblemType, int] = defaultdict(int)
self.success_rate: Dict[SubproblemType, float] = defaultdict(float)
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Main reasoning method implementing recursive reasoning."""
try:
# Initialize root problem
root = await self._initialize_problem(query, context)
self.subproblems[root.id] = root
# Recursively solve
solution = await self._solve_recursive(root.id, depth=0)
# Optimize solution
optimized = await self._optimize_solution(solution, root, context)
# Update metrics
self._update_metrics(root.id)
return {
"success": True,
"answer": optimized["answer"],
"confidence": optimized["confidence"],
"decomposition": self._get_problem_tree(root.id),
"solution_trace": self._get_solution_trace(root.id),
"performance_metrics": self._get_performance_metrics(),
"meta_insights": optimized["meta_insights"]
}
except Exception as e:
logging.error(f"Error in recursive reasoning: {str(e)}")
return {"success": False, "error": str(e)}
async def _initialize_problem(self, query: str, context: Dict[str, Any]) -> Subproblem:
"""Initialize the root problem."""
prompt = f"""
Initialize recursive reasoning problem:
Query: {query}
Context: {json.dumps(context)}
Analyze for:
1. Problem type classification
2. Initial decomposition strategy
3. Key dependencies
4. Solution approach
Format as:
[Problem]
Type: ...
Strategy: ...
Dependencies: ...
Approach: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_problem_init(response["answer"], query, context)
async def _decompose_problem(self, problem: Subproblem, context: Dict[str, Any]) -> List[Subproblem]:
"""Decompose a problem into subproblems."""
prompt = f"""
Decompose problem into subproblems:
Problem: {json.dumps(self._problem_to_dict(problem))}
Context: {json.dumps(context)}
For each subproblem specify:
1. [Type]: {" | ".join([t.value for t in SubproblemType])}
2. [Query]: Specific question
3. [Dependencies]: Required solutions
4. [Approach]: Solution strategy
Format as:
[S1]
Type: ...
Query: ...
Dependencies: ...
Approach: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_subproblems(response["answer"], problem.id, context)
async def _solve_recursive(self, problem_id: str, depth: int) -> Dict[str, Any]:
"""Recursively solve a problem and its subproblems."""
if depth > self.max_depth:
return {"success": False, "error": "Maximum recursion depth exceeded"}
if problem_id in self.cycle_detection:
return {"success": False, "error": "Cycle detected in recursive solving"}
problem = self.subproblems[problem_id]
self.cycle_detection.add(problem_id)
self.depth_distribution[depth] += 1
try:
# Check cache
cache_key = f"{problem.query}:{json.dumps(problem.context)}"
if cache_key in self.solution_cache:
return self.solution_cache[cache_key]
# Check if atomic
if problem.type == SubproblemType.ATOMIC:
solution = await self._solve_atomic(problem)
else:
# Decompose
subproblems = await self._decompose_problem(problem, problem.context)
for sub in subproblems:
self.subproblems[sub.id] = sub
problem.children.append(sub.id)
# Solve subproblems
if problem.type == SubproblemType.PARALLEL and len(subproblems) >= self.parallel_threshold:
# Solve in parallel
tasks = [self._solve_recursive(sub.id, depth + 1) for sub in subproblems]
subsolutions = await asyncio.gather(*tasks)
else:
# Solve sequentially
subsolutions = []
for sub in subproblems:
subsolution = await self._solve_recursive(sub.id, depth + 1)
subsolutions.append(subsolution)
# Synthesize solutions
solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
# Cache solution
self.solution_cache[cache_key] = solution
problem.solution = solution
problem.status = SolutionStatus.SOLVED if solution["success"] else SolutionStatus.FAILED
return solution
finally:
self.cycle_detection.remove(problem_id)
async def _solve_atomic(self, problem: Subproblem) -> Dict[str, Any]:
"""Solve an atomic problem."""
prompt = f"""
Solve atomic problem:
Problem: {json.dumps(self._problem_to_dict(problem))}
Provide:
1. Direct solution
2. Confidence level
3. Supporting evidence
4. Alternative approaches
Format as:
[Solution]
Answer: ...
Confidence: ...
Evidence: ...
Alternatives: ...
"""
response = await problem.context["groq_api"].predict(prompt)
solution = self._parse_atomic_solution(response["answer"])
self._record_step(RecursiveStep(
id=f"step_{len(self.steps)}",
subproblem_id=problem.id,
action="atomic_solve",
timestamp=datetime.now(),
result=solution,
metrics={"confidence": solution.get("confidence", 0.0)},
metadata={}
))
return solution
async def _synthesize_solutions(self, subsolutions: List[Dict[str, Any]], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
"""Synthesize solutions from subproblems."""
prompt = f"""
Synthesize solutions:
Problem: {json.dumps(self._problem_to_dict(problem))}
Solutions: {json.dumps(subsolutions)}
Context: {json.dumps(context)}
Provide:
1. Integrated solution
2. Confidence assessment
3. Integration method
4. Quality metrics
Format as:
[Synthesis]
Solution: ...
Confidence: ...
Method: ...
Metrics: ...
"""
response = await context["groq_api"].predict(prompt)
synthesis = self._parse_synthesis(response["answer"])
self._record_step(RecursiveStep(
id=f"step_{len(self.steps)}",
subproblem_id=problem.id,
action="synthesize",
timestamp=datetime.now(),
result=synthesis,
metrics={"confidence": synthesis.get("confidence", 0.0)},
metadata={"num_subsolutions": len(subsolutions)}
))
return synthesis
async def _optimize_solution(self, solution: Dict[str, Any], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize the final solution."""
prompt = f"""
Optimize recursive solution:
Original: {json.dumps(solution)}
Problem: {json.dumps(self._problem_to_dict(problem))}
Context: {json.dumps(context)}
Optimize for:
1. Completeness
2. Consistency
3. Efficiency
4. Clarity
Format as:
[Optimization]
Answer: ...
Improvements: ...
Metrics: ...
Insights: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_optimization(response["answer"])
def _update_metrics(self, root_id: str):
"""Update performance metrics."""
def update_recursive(problem_id: str):
problem = self.subproblems[problem_id]
self.type_distribution[problem.type] += 1
if problem.status == SolutionStatus.SOLVED:
self.success_rate[problem.type] = (
self.success_rate[problem.type] * (self.type_distribution[problem.type] - 1) +
problem.confidence
) / self.type_distribution[problem.type]
for child_id in problem.children:
update_recursive(child_id)
update_recursive(root_id)
def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
"""Get the problem decomposition tree."""
def build_tree(problem_id: str) -> Dict[str, Any]:
problem = self.subproblems[problem_id]
return {
"id": problem.id,
"type": problem.type.value,
"query": problem.query,
"status": problem.status.value,
"confidence": problem.confidence,
"children": [build_tree(child_id) for child_id in problem.children]
}
return build_tree(root_id)
def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
"""Get the solution trace for a problem."""
return [self._step_to_dict(step) for step in self.steps
if step.subproblem_id == root_id or
any(step.subproblem_id == sub_id for sub_id in self.subproblems[root_id].children)]
def _get_performance_metrics(self) -> Dict[str, Any]:
"""Get current performance metrics."""
return {
"depth_distribution": dict(self.depth_distribution),
"type_distribution": {t.value: c for t, c in self.type_distribution.items()},
"success_rate": {t.value: r for t, r in self.success_rate.items()},
"cache_hits": len(self.solution_cache),
"total_steps": len(self.steps)
}
def _record_step(self, step: RecursiveStep):
"""Record a reasoning step."""
self.steps.append(step)
def _parse_problem_init(self, response: str, query: str, context: Dict[str, Any]) -> Subproblem:
"""Parse initial problem configuration."""
problem_type = SubproblemType.COMPOSITE # default
dependencies = []
metadata = {}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Type:'):
try:
problem_type = SubproblemType(line[5:].strip().lower())
except ValueError:
pass
elif line.startswith('Dependencies:'):
dependencies = [d.strip() for d in line[13:].split(',')]
elif line.startswith('Strategy:') or line.startswith('Approach:'):
metadata["strategy"] = line.split(':', 1)[1].strip()
return Subproblem(
id="root",
type=problem_type,
query=query,
context=context,
parent_id=None,
children=[],
status=SolutionStatus.PENDING,
solution=None,
confidence=0.0,
dependencies=dependencies,
metadata=metadata
)
def _parse_subproblems(self, response: str, parent_id: str, context: Dict[str, Any]) -> List[Subproblem]:
"""Parse subproblems from response."""
subproblems = []
current = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[S'):
if current:
subproblems.append(current)
current = None
elif line.startswith('Type:'):
try:
problem_type = SubproblemType(line[5:].strip().lower())
current = Subproblem(
id=f"{parent_id}_{len(subproblems)}",
type=problem_type,
query="",
context=context,
parent_id=parent_id,
children=[],
status=SolutionStatus.PENDING,
solution=None,
confidence=0.0,
dependencies=[],
metadata={}
)
except ValueError:
current = None
elif current:
if line.startswith('Query:'):
current.query = line[6:].strip()
elif line.startswith('Dependencies:'):
current.dependencies = [d.strip() for d in line[13:].split(',')]
elif line.startswith('Approach:'):
current.metadata["approach"] = line[9:].strip()
if current:
subproblems.append(current)
return subproblems
def _parse_atomic_solution(self, response: str) -> Dict[str, Any]:
"""Parse atomic solution from response."""
solution = {
"success": True,
"answer": "",
"confidence": 0.0,
"evidence": [],
"alternatives": []
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Answer:'):
solution["answer"] = line[7:].strip()
elif line.startswith('Confidence:'):
try:
solution["confidence"] = float(line[11:].strip())
except:
pass
elif line.startswith('Evidence:'):
solution["evidence"] = [e.strip() for e in line[9:].split(',')]
elif line.startswith('Alternatives:'):
solution["alternatives"] = [a.strip() for a in line[13:].split(',')]
return solution
def _parse_synthesis(self, response: str) -> Dict[str, Any]:
"""Parse synthesis result from response."""
synthesis = {
"success": True,
"solution": "",
"confidence": 0.0,
"method": "",
"metrics": {}
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Solution:'):
synthesis["solution"] = line[9:].strip()
elif line.startswith('Confidence:'):
try:
synthesis["confidence"] = float(line[11:].strip())
except:
pass
elif line.startswith('Method:'):
synthesis["method"] = line[7:].strip()
elif line.startswith('Metrics:'):
try:
synthesis["metrics"] = json.loads(line[8:].strip())
except:
pass
return synthesis
def _parse_optimization(self, response: str) -> Dict[str, Any]:
"""Parse optimization result from response."""
optimization = {
"answer": "",
"confidence": 0.0,
"improvements": [],
"metrics": {},
"meta_insights": []
}
for line in response.split('\n'):
line = line.strip()
if line.startswith('Answer:'):
optimization["answer"] = line[7:].strip()
elif line.startswith('Improvements:'):
optimization["improvements"] = [i.strip() for i in line[13:].split(',')]
elif line.startswith('Metrics:'):
try:
optimization["metrics"] = json.loads(line[8:].strip())
except:
pass
elif line.startswith('Insights:'):
optimization["meta_insights"] = [i.strip() for i in line[9:].split(',')]
return optimization
def _problem_to_dict(self, problem: Subproblem) -> Dict[str, Any]:
"""Convert problem to dictionary for serialization."""
return {
"id": problem.id,
"type": problem.type.value,
"query": problem.query,
"parent_id": problem.parent_id,
"children": problem.children,
"status": problem.status.value,
"confidence": problem.confidence,
"dependencies": problem.dependencies,
"metadata": problem.metadata
}
def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
"""Convert step to dictionary for serialization."""
return {
"id": step.id,
"subproblem_id": step.subproblem_id,
"action": step.action,
"timestamp": step.timestamp.isoformat(),
"result": step.result,
"metrics": step.metrics,
"metadata": step.metadata
}
def clear_cache(self):
"""Clear solution cache."""
self.solution_cache.clear()
def get_statistics(self) -> Dict[str, Any]:
"""Get detailed statistics about the reasoning process."""
return {
"total_problems": len(self.subproblems),
"total_steps": len(self.steps),
"cache_size": len(self.solution_cache),
"type_distribution": dict(self.type_distribution),
"depth_distribution": dict(self.depth_distribution),
"success_rates": dict(self.success_rate),
"average_confidence": sum(p.confidence for p in self.subproblems.values()) / len(self.subproblems) if self.subproblems else 0.0
}
|