Spaces:
Runtime error
Runtime error
File size: 19,217 Bytes
dcb2a99 a6ce454 dcb2a99 a6ce454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
"""Advanced portfolio optimization for venture strategies."""
import logging
from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
import json
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
import numpy as np
from collections import defaultdict
from .base import ReasoningStrategy
@dataclass
class VentureMetrics:
"""Venture performance metrics."""
revenue: float
profit: float
growth_rate: float
risk_score: float
resource_usage: Dict[str, float]
synergy_score: float
@dataclass
class ResourceAllocation:
"""Resource allocation configuration."""
venture_id: str
resources: Dict[str, float]
constraints: List[str]
dependencies: List[str]
priority: float
class PortfolioOptimizer:
"""
Advanced portfolio optimization that:
1. Optimizes venture mix
2. Allocates resources
3. Manages risks
4. Maximizes synergies
5. Balances growth
"""
def __init__(self):
self.ventures: Dict[str, VentureMetrics] = {}
self.allocations: Dict[str, ResourceAllocation] = {}
async def optimize_portfolio(self,
ventures: List[str],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize venture portfolio."""
try:
# Analyze ventures
analysis = await self._analyze_ventures(ventures, context)
# Optimize allocation
allocation = await self._optimize_allocation(analysis, context)
# Risk optimization
risk = await self._optimize_risk(allocation, context)
# Synergy optimization
synergy = await self._optimize_synergies(risk, context)
# Performance projections
projections = await self._project_performance(synergy, context)
return {
"success": projections["annual_profit"] >= 1_000_000,
"analysis": analysis,
"allocation": allocation,
"risk": risk,
"synergy": synergy,
"projections": projections
}
except Exception as e:
logging.error(f"Error in portfolio optimization: {str(e)}")
return {"success": False, "error": str(e)}
async def _analyze_ventures(self,
ventures: List[str],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Analyze venture characteristics."""
prompt = f"""
Analyze ventures:
Ventures: {json.dumps(ventures)}
Context: {json.dumps(context)}
Analyze:
1. Performance metrics
2. Resource requirements
3. Risk factors
4. Growth potential
5. Synergy opportunities
Format as:
[Venture1]
Metrics: ...
Resources: ...
Risks: ...
Growth: ...
Synergies: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_venture_analysis(response["answer"])
async def _optimize_allocation(self,
analysis: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize resource allocation."""
prompt = f"""
Optimize resource allocation:
Analysis: {json.dumps(analysis)}
Context: {json.dumps(context)}
Optimize for:
1. Resource efficiency
2. Growth potential
3. Risk balance
4. Synergy capture
5. Constraint satisfaction
Format as:
[Allocation1]
Venture: ...
Resources: ...
Constraints: ...
Dependencies: ...
Priority: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_allocation_optimization(response["answer"])
async def _optimize_risk(self,
allocation: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize risk management."""
prompt = f"""
Optimize risk management:
Allocation: {json.dumps(allocation)}
Context: {json.dumps(context)}
Optimize for:
1. Risk diversification
2. Exposure limits
3. Correlation management
4. Hedging strategies
5. Contingency planning
Format as:
[Risk1]
Type: ...
Exposure: ...
Mitigation: ...
Contingency: ...
Impact: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_risk_optimization(response["answer"])
async def _optimize_synergies(self,
risk: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize portfolio synergies."""
prompt = f"""
Optimize synergies:
Risk: {json.dumps(risk)}
Context: {json.dumps(context)}
Optimize for:
1. Resource sharing
2. Knowledge transfer
3. Market leverage
4. Technology reuse
5. Customer cross-sell
Format as:
[Synergy1]
Type: ...
Ventures: ...
Potential: ...
Requirements: ...
Timeline: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_synergy_optimization(response["answer"])
async def _project_performance(self,
synergy: Dict[str, Any],
context: Dict[str, Any]) -> Dict[str, Any]:
"""Project portfolio performance."""
prompt = f"""
Project performance:
Synergy: {json.dumps(synergy)}
Context: {json.dumps(context)}
Project:
1. Revenue growth
2. Profit margins
3. Resource utilization
4. Risk metrics
5. Synergy capture
Format as:
[Projections]
Revenue: ...
Profit: ...
Resources: ...
Risk: ...
Synergies: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_performance_projections(response["answer"])
def _calculate_portfolio_metrics(self) -> Dict[str, float]:
"""Calculate comprehensive portfolio metrics."""
if not self.ventures:
return {
"total_revenue": 0.0,
"total_profit": 0.0,
"avg_growth": 0.0,
"avg_risk": 0.0,
"resource_efficiency": 0.0,
"synergy_capture": 0.0
}
metrics = {
"total_revenue": sum(v.revenue for v in self.ventures.values()),
"total_profit": sum(v.profit for v in self.ventures.values()),
"avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]),
"avg_risk": np.mean([v.risk_score for v in self.ventures.values()]),
"resource_efficiency": self._calculate_resource_efficiency(),
"synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()])
}
return metrics
def _calculate_resource_efficiency(self) -> float:
"""Calculate resource utilization efficiency."""
if not self.ventures or not self.allocations:
return 0.0
total_resources = defaultdict(float)
used_resources = defaultdict(float)
# Sum up total and used resources
for venture_id, allocation in self.allocations.items():
for resource, amount in allocation.resources.items():
total_resources[resource] += amount
if venture_id in self.ventures:
used_resources[resource] += (
amount * self.ventures[venture_id].resource_usage.get(resource, 0)
)
# Calculate efficiency for each resource
efficiencies = []
for resource in total_resources:
if total_resources[resource] > 0:
efficiency = used_resources[resource] / total_resources[resource]
efficiencies.append(efficiency)
return np.mean(efficiencies) if efficiencies else 0.0
def get_portfolio_insights(self) -> Dict[str, Any]:
"""Get comprehensive portfolio insights."""
metrics = self._calculate_portfolio_metrics()
return {
"portfolio_metrics": metrics,
"venture_metrics": {
venture_id: {
"revenue": v.revenue,
"profit": v.profit,
"growth_rate": v.growth_rate,
"risk_score": v.risk_score,
"synergy_score": v.synergy_score
}
for venture_id, v in self.ventures.items()
},
"resource_allocation": {
venture_id: {
"resources": a.resources,
"priority": a.priority,
"constraints": len(a.constraints),
"dependencies": len(a.dependencies)
}
for venture_id, a in self.allocations.items()
},
"risk_profile": {
"portfolio_risk": metrics["avg_risk"],
"risk_concentration": self._calculate_risk_concentration(),
"risk_correlation": self._calculate_risk_correlation()
},
"optimization_opportunities": self._identify_optimization_opportunities()
}
def _calculate_risk_concentration(self) -> float:
"""Calculate risk concentration in portfolio."""
if not self.ventures:
return 0.0
risk_weights = [v.risk_score for v in self.ventures.values()]
return np.std(risk_weights) if len(risk_weights) > 1 else 0.0
def _calculate_risk_correlation(self) -> float:
"""Calculate risk correlation between ventures."""
if len(self.ventures) < 2:
return 0.0
# Create correlation matrix of risk scores and resource usage
venture_metrics = [
[v.risk_score] + list(v.resource_usage.values())
for v in self.ventures.values()
]
correlation_matrix = np.corrcoef(venture_metrics)
return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)])
def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]:
"""Identify portfolio optimization opportunities."""
opportunities = []
# Resource optimization opportunities
resource_efficiency = self._calculate_resource_efficiency()
if resource_efficiency < 0.8:
opportunities.append({
"type": "resource_optimization",
"potential": 1.0 - resource_efficiency,
"description": "Improve resource utilization efficiency"
})
# Risk optimization opportunities
risk_concentration = self._calculate_risk_concentration()
if risk_concentration > 0.2:
opportunities.append({
"type": "risk_diversification",
"potential": risk_concentration,
"description": "Reduce risk concentration"
})
# Synergy optimization opportunities
avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0
if avg_synergy < 0.7:
opportunities.append({
"type": "synergy_capture",
"potential": 1.0 - avg_synergy,
"description": "Increase synergy capture"
})
return opportunities
class PortfolioOptimizationStrategy(ReasoningStrategy):
"""
Advanced portfolio optimization strategy that:
1. Analyzes venture metrics
2. Optimizes resource allocation
3. Balances risk-reward
4. Maximizes portfolio synergies
5. Provides actionable recommendations
"""
def __init__(self, config: Optional[Dict[str, Any]] = None):
"""Initialize portfolio optimization strategy."""
super().__init__()
self.config = config or {}
self.optimizer = PortfolioOptimizer()
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate portfolio optimization strategy based on query and context.
Args:
query: The portfolio optimization query
context: Additional context and parameters
Returns:
Dict containing optimization strategy and confidence scores
"""
try:
# Extract portfolio parameters
params = self._extract_parameters(query, context)
# Optimize portfolio
optimization_result = self.optimizer.optimize_portfolio(
ventures=params.get('ventures', []),
constraints=params.get('constraints', []),
objectives=params.get('objectives', [])
)
# Get metrics
metrics = self.optimizer.get_portfolio_metrics()
# Generate recommendations
recommendations = self._generate_recommendations(
optimization_result,
metrics
)
return {
'answer': self._format_strategy(optimization_result, metrics, recommendations),
'confidence': self._calculate_confidence(optimization_result),
'optimization': optimization_result,
'metrics': metrics,
'recommendations': recommendations
}
except Exception as e:
logging.error(f"Portfolio optimization failed: {str(e)}")
return {
'error': f"Portfolio optimization failed: {str(e)}",
'confidence': 0.0
}
def _extract_parameters(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
"""Extract optimization parameters from query and context."""
params = {}
# Extract ventures
if 'ventures' in context:
params['ventures'] = context['ventures']
else:
# Default empty portfolio
params['ventures'] = []
# Extract constraints
if 'constraints' in context:
params['constraints'] = context['constraints']
else:
# Default constraints
params['constraints'] = [
'budget_limit',
'risk_tolerance',
'resource_capacity'
]
# Extract objectives
if 'objectives' in context:
params['objectives'] = context['objectives']
else:
# Default objectives
params['objectives'] = [
'maximize_returns',
'minimize_risk',
'maximize_synergies'
]
return params
def _generate_recommendations(
self,
optimization_result: Dict[str, Any],
metrics: Dict[str, Any]
) -> List[str]:
"""Generate actionable recommendations."""
recommendations = []
# Portfolio composition recommendations
if 'allocation' in optimization_result:
allocation = optimization_result['allocation']
recommendations.extend([
f"Allocate {alloc['percentage']:.1f}% to {alloc['venture']}"
for alloc in allocation
])
# Risk management recommendations
if 'risk_analysis' in metrics:
risk = metrics['risk_analysis']
if risk.get('total_risk', 0) > 0.7:
recommendations.append(
"Consider reducing exposure to high-risk ventures"
)
if risk.get('correlation', 0) > 0.8:
recommendations.append(
"Increase portfolio diversification to reduce correlation"
)
# Performance optimization recommendations
if 'performance' in metrics:
perf = metrics['performance']
if perf.get('sharpe_ratio', 0) < 1.0:
recommendations.append(
"Optimize risk-adjusted returns through better venture selection"
)
if perf.get('efficiency', 0) < 0.8:
recommendations.append(
"Improve resource allocation efficiency across ventures"
)
return recommendations
def _calculate_confidence(self, optimization_result: Dict[str, Any]) -> float:
"""Calculate confidence score based on optimization quality."""
# Base confidence
confidence = 0.5
# Adjust based on optimization completeness
if optimization_result.get('allocation'):
confidence += 0.1
if optimization_result.get('risk_analysis'):
confidence += 0.1
if optimization_result.get('performance_metrics'):
confidence += 0.1
# Adjust based on solution quality
if optimization_result.get('convergence_status') == 'optimal':
confidence += 0.2
elif optimization_result.get('convergence_status') == 'suboptimal':
confidence += 0.1
return min(confidence, 1.0)
def _format_strategy(
self,
optimization_result: Dict[str, Any],
metrics: Dict[str, Any],
recommendations: List[str]
) -> str:
"""Format optimization strategy into readable text."""
sections = []
# Portfolio allocation
if 'allocation' in optimization_result:
allocation = optimization_result['allocation']
sections.append("Portfolio Allocation:")
for alloc in allocation:
sections.append(
f"- {alloc['venture']}: {alloc['percentage']:.1f}%"
)
# Key metrics
if metrics:
sections.append("\nKey Metrics:")
for key, value in metrics.items():
if isinstance(value, (int, float)):
sections.append(f"- {key.replace('_', ' ').title()}: {value:.2f}")
else:
sections.append(f"- {key.replace('_', ' ').title()}: {value}")
# Recommendations
if recommendations:
sections.append("\nKey Recommendations:")
for rec in recommendations:
sections.append(f"- {rec}")
return "\n".join(sections)
|