File size: 5,470 Bytes
d6f7321
 
 
 
 
 
 
 
 
72fe243
d6f7321
 
 
 
 
 
 
 
 
 
 
 
 
 
1671ec3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6f7321
 
1671ec3
d6f7321
 
 
1671ec3
d6f7321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Emergent Reasoning Module
------------------------
Implements emergent reasoning capabilities that arise from the interaction
of multiple reasoning strategies and patterns.
"""

from typing import Dict, Any, List, Optional
from .base import ReasoningStrategy
from .meta_learning import MetaLearningStrategy
from .chain_of_thought import ChainOfThoughtStrategy
from .tree_of_thoughts import TreeOfThoughtsStrategy

class EmergentReasoning(ReasoningStrategy):
    """
    A reasoning strategy that combines multiple approaches to discover
    emergent patterns and solutions.
    """
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize emergent reasoning with component strategies."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Initialize component strategies with shared config
        strategy_config = {
            'min_confidence': self.min_confidence,
            'parallel_threshold': self.parallel_threshold,
            'learning_rate': self.learning_rate,
            'strategy_weights': self.strategy_weights
        }
        
        self.meta_learner = MetaLearningStrategy(strategy_config)
        self.chain_of_thought = ChainOfThoughtStrategy(strategy_config)
        self.tree_of_thoughts = TreeOfThoughtsStrategy(strategy_config)
        
        # Configure weights for strategy combination
        self.weights = self.config.get('combination_weights', {
            'meta': 0.4,
            'chain': 0.3,
            'tree': 0.3
        })
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply emergent reasoning by combining multiple strategies and
        identifying patterns that emerge from their interaction.
        
        Args:
            query: The input query to reason about
            context: Additional context and parameters
            
        Returns:
            Dict containing reasoning results and confidence scores
        """
        try:
            # Get results from each strategy
            meta_result = await self.meta_learner.reason(query, context)
            chain_result = await self.chain_of_thought.reason(query, context)
            tree_result = await self.tree_of_thoughts.reason(query, context)
            
            # Combine results with weighted averaging
            combined_answer = self._combine_results([
                (meta_result.get('answer', ''), self.weights['meta']),
                (chain_result.get('answer', ''), self.weights['chain']), 
                (tree_result.get('answer', ''), self.weights['tree'])
            ])
            
            # Calculate overall confidence
            confidence = (
                meta_result.get('confidence', 0) * self.weights['meta'] +
                chain_result.get('confidence', 0) * self.weights['chain'] +
                tree_result.get('confidence', 0) * self.weights['tree']
            )
            
            return {
                'answer': combined_answer,
                'confidence': confidence,
                'reasoning_path': {
                    'meta': meta_result.get('reasoning_path'),
                    'chain': chain_result.get('reasoning_path'),
                    'tree': tree_result.get('reasoning_path')
                },
                'emergent_patterns': self._identify_patterns([
                    meta_result, chain_result, tree_result
                ])
            }
            
        except Exception as e:
            return {
                'error': f"Emergent reasoning failed: {str(e)}",
                'confidence': 0.0
            }
    
    def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str:
        """Combine multiple reasoning results with weights."""
        if not weighted_results:
            return ""
            
        # For now, use the highest weighted result
        return max(weighted_results, key=lambda x: x[1])[0]
    
    def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]:
        """Identify common patterns across different reasoning strategies."""
        patterns = []
        
        # Extract common themes or conclusions
        answers = [r.get('answer', '') for r in results if r.get('answer')]
        if len(set(answers)) == 1:
            patterns.append("All strategies reached the same conclusion")
        elif len(set(answers)) < len(answers):
            patterns.append("Some strategies converged on similar conclusions")
            
        # Look for common confidence patterns
        confidences = [r.get('confidence', 0) for r in results]
        avg_confidence = sum(confidences) / len(confidences) if confidences else 0
        if avg_confidence > 0.8:
            patterns.append("High confidence across all strategies")
        elif avg_confidence < 0.3:
            patterns.append("Low confidence across strategies")
            
        return patterns