Spaces:
Runtime error
Runtime error
nananie143
commited on
Upload folder using huggingface_hub
Browse files- reasoning/__init__.py +30 -33
- reasoning/emergent.py +115 -0
reasoning/__init__.py
CHANGED
@@ -1,60 +1,55 @@
|
|
1 |
"""
|
2 |
Advanced Reasoning Engine for Multi-Model System
|
3 |
---------------------------------------------
|
4 |
-
A highly sophisticated reasoning system combining
|
5 |
|
6 |
Core Reasoning:
|
7 |
1. Chain of Thought (CoT)
|
8 |
2. Tree of Thoughts (ToT)
|
9 |
-
3.
|
10 |
-
4.
|
11 |
-
5.
|
12 |
-
6.
|
13 |
|
14 |
Advanced Reasoning:
|
15 |
7. Neurosymbolic Reasoning
|
16 |
-
8.
|
17 |
-
9.
|
18 |
-
10.
|
19 |
-
11.
|
20 |
-
12.
|
21 |
|
22 |
Learning & Adaptation:
|
23 |
-
13.
|
24 |
-
14.
|
25 |
-
15.
|
26 |
-
16.
|
27 |
-
|
28 |
-
Robustness Features:
|
29 |
-
17. Uncertainty Quantification
|
30 |
-
18. Error Recovery
|
31 |
-
19. Consistency Checking
|
32 |
-
20. Bias Detection
|
33 |
"""
|
34 |
|
35 |
from .base import ReasoningStrategy
|
36 |
from .multimodal import MultiModalReasoning
|
37 |
from .bayesian import BayesianReasoning
|
38 |
-
from .quantum import QuantumReasoning
|
39 |
from .neurosymbolic import NeurosymbolicReasoning
|
40 |
from .emergent import EmergentReasoning
|
41 |
-
from .
|
42 |
from .chain_of_thought import ChainOfThoughtStrategy
|
43 |
from .tree_of_thoughts import TreeOfThoughtsStrategy
|
44 |
from .recursive import RecursiveReasoning
|
45 |
from .analogical import AnalogicalReasoning
|
46 |
-
from .
|
47 |
-
from .
|
48 |
-
from .
|
49 |
-
from .
|
50 |
-
from .
|
|
|
|
|
51 |
|
52 |
__all__ = [
|
53 |
'ReasoningStrategy',
|
54 |
'MultiModalReasoning',
|
55 |
'BayesianReasoning',
|
56 |
'QuantumReasoning',
|
57 |
-
'QuantumInspiredStrategy',
|
58 |
'NeurosymbolicReasoning',
|
59 |
'EmergentReasoning',
|
60 |
'MetaLearningStrategy',
|
@@ -62,9 +57,11 @@ __all__ = [
|
|
62 |
'TreeOfThoughtsStrategy',
|
63 |
'RecursiveReasoning',
|
64 |
'AnalogicalReasoning',
|
65 |
-
'
|
66 |
-
'
|
67 |
-
'
|
68 |
-
'
|
69 |
-
'
|
|
|
|
|
70 |
]
|
|
|
1 |
"""
|
2 |
Advanced Reasoning Engine for Multi-Model System
|
3 |
---------------------------------------------
|
4 |
+
A highly sophisticated reasoning system combining multiple reasoning strategies.
|
5 |
|
6 |
Core Reasoning:
|
7 |
1. Chain of Thought (CoT)
|
8 |
2. Tree of Thoughts (ToT)
|
9 |
+
3. Recursive Reasoning
|
10 |
+
4. Analogical Reasoning
|
11 |
+
5. Meta-Learning
|
12 |
+
6. Local LLM
|
13 |
|
14 |
Advanced Reasoning:
|
15 |
7. Neurosymbolic Reasoning
|
16 |
+
8. Bayesian Reasoning
|
17 |
+
9. Quantum Reasoning
|
18 |
+
10. Emergent Reasoning
|
19 |
+
11. Multimodal Reasoning
|
20 |
+
12. Specialized Reasoning
|
21 |
|
22 |
Learning & Adaptation:
|
23 |
+
13. Market Analysis
|
24 |
+
14. Portfolio Optimization
|
25 |
+
15. Venture Strategies
|
26 |
+
16. Monetization Strategies
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"""
|
28 |
|
29 |
from .base import ReasoningStrategy
|
30 |
from .multimodal import MultiModalReasoning
|
31 |
from .bayesian import BayesianReasoning
|
32 |
+
from .quantum import QuantumReasoning
|
33 |
from .neurosymbolic import NeurosymbolicReasoning
|
34 |
from .emergent import EmergentReasoning
|
35 |
+
from .meta_learning import MetaLearningStrategy
|
36 |
from .chain_of_thought import ChainOfThoughtStrategy
|
37 |
from .tree_of_thoughts import TreeOfThoughtsStrategy
|
38 |
from .recursive import RecursiveReasoning
|
39 |
from .analogical import AnalogicalReasoning
|
40 |
+
from .specialized import SpecializedReasoning
|
41 |
+
from .local_llm import LocalLLMStrategy
|
42 |
+
from .market_analysis import MarketAnalysisStrategy
|
43 |
+
from .portfolio_optimization import PortfolioOptimizationStrategy
|
44 |
+
from .venture_strategies import VentureStrategy
|
45 |
+
from .monetization import MonetizationStrategy
|
46 |
+
from .unified_engine import UnifiedReasoningEngine
|
47 |
|
48 |
__all__ = [
|
49 |
'ReasoningStrategy',
|
50 |
'MultiModalReasoning',
|
51 |
'BayesianReasoning',
|
52 |
'QuantumReasoning',
|
|
|
53 |
'NeurosymbolicReasoning',
|
54 |
'EmergentReasoning',
|
55 |
'MetaLearningStrategy',
|
|
|
57 |
'TreeOfThoughtsStrategy',
|
58 |
'RecursiveReasoning',
|
59 |
'AnalogicalReasoning',
|
60 |
+
'SpecializedReasoning',
|
61 |
+
'LocalLLMStrategy',
|
62 |
+
'MarketAnalysisStrategy',
|
63 |
+
'PortfolioOptimizationStrategy',
|
64 |
+
'VentureStrategy',
|
65 |
+
'MonetizationStrategy',
|
66 |
+
'UnifiedReasoningEngine'
|
67 |
]
|
reasoning/emergent.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Emergent Reasoning Module
|
3 |
+
------------------------
|
4 |
+
Implements emergent reasoning capabilities that arise from the interaction
|
5 |
+
of multiple reasoning strategies and patterns.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Dict, Any, List, Optional
|
9 |
+
from .base import ReasoningStrategy
|
10 |
+
from .meta import MetaLearningStrategy
|
11 |
+
from .chain_of_thought import ChainOfThoughtStrategy
|
12 |
+
from .tree_of_thoughts import TreeOfThoughtsStrategy
|
13 |
+
|
14 |
+
class EmergentReasoning(ReasoningStrategy):
|
15 |
+
"""
|
16 |
+
A reasoning strategy that combines multiple approaches to discover
|
17 |
+
emergent patterns and solutions.
|
18 |
+
"""
|
19 |
+
|
20 |
+
def __init__(self, config: Optional[Dict[str, Any]] = None):
|
21 |
+
"""Initialize emergent reasoning with component strategies."""
|
22 |
+
super().__init__()
|
23 |
+
self.config = config or {}
|
24 |
+
|
25 |
+
# Initialize component strategies
|
26 |
+
self.meta_learner = MetaLearningStrategy()
|
27 |
+
self.chain_of_thought = ChainOfThoughtStrategy()
|
28 |
+
self.tree_of_thoughts = TreeOfThoughtsStrategy()
|
29 |
+
|
30 |
+
# Configure weights for strategy combination
|
31 |
+
self.weights = {
|
32 |
+
'meta': 0.4,
|
33 |
+
'chain': 0.3,
|
34 |
+
'tree': 0.3
|
35 |
+
}
|
36 |
+
|
37 |
+
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
|
38 |
+
"""
|
39 |
+
Apply emergent reasoning by combining multiple strategies and
|
40 |
+
identifying patterns that emerge from their interaction.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
query: The input query to reason about
|
44 |
+
context: Additional context and parameters
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
Dict containing reasoning results and confidence scores
|
48 |
+
"""
|
49 |
+
try:
|
50 |
+
# Get results from each strategy
|
51 |
+
meta_result = await self.meta_learner.reason(query, context)
|
52 |
+
chain_result = await self.chain_of_thought.reason(query, context)
|
53 |
+
tree_result = await self.tree_of_thoughts.reason(query, context)
|
54 |
+
|
55 |
+
# Combine results with weighted averaging
|
56 |
+
combined_answer = self._combine_results([
|
57 |
+
(meta_result.get('answer', ''), self.weights['meta']),
|
58 |
+
(chain_result.get('answer', ''), self.weights['chain']),
|
59 |
+
(tree_result.get('answer', ''), self.weights['tree'])
|
60 |
+
])
|
61 |
+
|
62 |
+
# Calculate overall confidence
|
63 |
+
confidence = (
|
64 |
+
meta_result.get('confidence', 0) * self.weights['meta'] +
|
65 |
+
chain_result.get('confidence', 0) * self.weights['chain'] +
|
66 |
+
tree_result.get('confidence', 0) * self.weights['tree']
|
67 |
+
)
|
68 |
+
|
69 |
+
return {
|
70 |
+
'answer': combined_answer,
|
71 |
+
'confidence': confidence,
|
72 |
+
'reasoning_path': {
|
73 |
+
'meta': meta_result.get('reasoning_path'),
|
74 |
+
'chain': chain_result.get('reasoning_path'),
|
75 |
+
'tree': tree_result.get('reasoning_path')
|
76 |
+
},
|
77 |
+
'emergent_patterns': self._identify_patterns([
|
78 |
+
meta_result, chain_result, tree_result
|
79 |
+
])
|
80 |
+
}
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
return {
|
84 |
+
'error': f"Emergent reasoning failed: {str(e)}",
|
85 |
+
'confidence': 0.0
|
86 |
+
}
|
87 |
+
|
88 |
+
def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str:
|
89 |
+
"""Combine multiple reasoning results with weights."""
|
90 |
+
if not weighted_results:
|
91 |
+
return ""
|
92 |
+
|
93 |
+
# For now, use the highest weighted result
|
94 |
+
return max(weighted_results, key=lambda x: x[1])[0]
|
95 |
+
|
96 |
+
def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]:
|
97 |
+
"""Identify common patterns across different reasoning strategies."""
|
98 |
+
patterns = []
|
99 |
+
|
100 |
+
# Extract common themes or conclusions
|
101 |
+
answers = [r.get('answer', '') for r in results if r.get('answer')]
|
102 |
+
if len(set(answers)) == 1:
|
103 |
+
patterns.append("All strategies reached the same conclusion")
|
104 |
+
elif len(set(answers)) < len(answers):
|
105 |
+
patterns.append("Some strategies converged on similar conclusions")
|
106 |
+
|
107 |
+
# Look for common confidence patterns
|
108 |
+
confidences = [r.get('confidence', 0) for r in results]
|
109 |
+
avg_confidence = sum(confidences) / len(confidences) if confidences else 0
|
110 |
+
if avg_confidence > 0.8:
|
111 |
+
patterns.append("High confidence across all strategies")
|
112 |
+
elif avg_confidence < 0.3:
|
113 |
+
patterns.append("Low confidence across strategies")
|
114 |
+
|
115 |
+
return patterns
|