nananie143 commited on
Commit
d6f7321
·
verified ·
1 Parent(s): dcb2a99

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. reasoning/__init__.py +30 -33
  2. reasoning/emergent.py +115 -0
reasoning/__init__.py CHANGED
@@ -1,60 +1,55 @@
1
  """
2
  Advanced Reasoning Engine for Multi-Model System
3
  ---------------------------------------------
4
- A highly sophisticated reasoning system combining:
5
 
6
  Core Reasoning:
7
  1. Chain of Thought (CoT)
8
  2. Tree of Thoughts (ToT)
9
- 3. Graph of Thoughts (GoT)
10
- 4. Recursive Reasoning
11
- 5. Analogical Reasoning
12
- 6. Meta-Learning
13
 
14
  Advanced Reasoning:
15
  7. Neurosymbolic Reasoning
16
- 8. Counterfactual Reasoning
17
- 9. State Space Search
18
- 10. Probabilistic Reasoning
19
- 11. Causal Inference
20
- 12. Temporal Reasoning
21
 
22
  Learning & Adaptation:
23
- 13. Online Learning
24
- 14. Transfer Learning
25
- 15. Meta-Learning
26
- 16. Active Learning
27
-
28
- Robustness Features:
29
- 17. Uncertainty Quantification
30
- 18. Error Recovery
31
- 19. Consistency Checking
32
- 20. Bias Detection
33
  """
34
 
35
  from .base import ReasoningStrategy
36
  from .multimodal import MultiModalReasoning
37
  from .bayesian import BayesianReasoning
38
- from .quantum import QuantumReasoning, QuantumInspiredStrategy
39
  from .neurosymbolic import NeurosymbolicReasoning
40
  from .emergent import EmergentReasoning
41
- from .meta import MetaLearningStrategy
42
  from .chain_of_thought import ChainOfThoughtStrategy
43
  from .tree_of_thoughts import TreeOfThoughtsStrategy
44
  from .recursive import RecursiveReasoning
45
  from .analogical import AnalogicalReasoning
46
- from .causal import CausalReasoning
47
- from .state_space import StateSpaceSearch
48
- from .counterfactual import CounterfactualReasoning
49
- from .meta_reasoning import MetaReasoning
50
- from .engine import BavePantherReasoning
 
 
51
 
52
  __all__ = [
53
  'ReasoningStrategy',
54
  'MultiModalReasoning',
55
  'BayesianReasoning',
56
  'QuantumReasoning',
57
- 'QuantumInspiredStrategy',
58
  'NeurosymbolicReasoning',
59
  'EmergentReasoning',
60
  'MetaLearningStrategy',
@@ -62,9 +57,11 @@ __all__ = [
62
  'TreeOfThoughtsStrategy',
63
  'RecursiveReasoning',
64
  'AnalogicalReasoning',
65
- 'CausalReasoning',
66
- 'StateSpaceSearch',
67
- 'CounterfactualReasoning',
68
- 'MetaReasoning',
69
- 'BavePantherReasoning'
 
 
70
  ]
 
1
  """
2
  Advanced Reasoning Engine for Multi-Model System
3
  ---------------------------------------------
4
+ A highly sophisticated reasoning system combining multiple reasoning strategies.
5
 
6
  Core Reasoning:
7
  1. Chain of Thought (CoT)
8
  2. Tree of Thoughts (ToT)
9
+ 3. Recursive Reasoning
10
+ 4. Analogical Reasoning
11
+ 5. Meta-Learning
12
+ 6. Local LLM
13
 
14
  Advanced Reasoning:
15
  7. Neurosymbolic Reasoning
16
+ 8. Bayesian Reasoning
17
+ 9. Quantum Reasoning
18
+ 10. Emergent Reasoning
19
+ 11. Multimodal Reasoning
20
+ 12. Specialized Reasoning
21
 
22
  Learning & Adaptation:
23
+ 13. Market Analysis
24
+ 14. Portfolio Optimization
25
+ 15. Venture Strategies
26
+ 16. Monetization Strategies
 
 
 
 
 
 
27
  """
28
 
29
  from .base import ReasoningStrategy
30
  from .multimodal import MultiModalReasoning
31
  from .bayesian import BayesianReasoning
32
+ from .quantum import QuantumReasoning
33
  from .neurosymbolic import NeurosymbolicReasoning
34
  from .emergent import EmergentReasoning
35
+ from .meta_learning import MetaLearningStrategy
36
  from .chain_of_thought import ChainOfThoughtStrategy
37
  from .tree_of_thoughts import TreeOfThoughtsStrategy
38
  from .recursive import RecursiveReasoning
39
  from .analogical import AnalogicalReasoning
40
+ from .specialized import SpecializedReasoning
41
+ from .local_llm import LocalLLMStrategy
42
+ from .market_analysis import MarketAnalysisStrategy
43
+ from .portfolio_optimization import PortfolioOptimizationStrategy
44
+ from .venture_strategies import VentureStrategy
45
+ from .monetization import MonetizationStrategy
46
+ from .unified_engine import UnifiedReasoningEngine
47
 
48
  __all__ = [
49
  'ReasoningStrategy',
50
  'MultiModalReasoning',
51
  'BayesianReasoning',
52
  'QuantumReasoning',
 
53
  'NeurosymbolicReasoning',
54
  'EmergentReasoning',
55
  'MetaLearningStrategy',
 
57
  'TreeOfThoughtsStrategy',
58
  'RecursiveReasoning',
59
  'AnalogicalReasoning',
60
+ 'SpecializedReasoning',
61
+ 'LocalLLMStrategy',
62
+ 'MarketAnalysisStrategy',
63
+ 'PortfolioOptimizationStrategy',
64
+ 'VentureStrategy',
65
+ 'MonetizationStrategy',
66
+ 'UnifiedReasoningEngine'
67
  ]
reasoning/emergent.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Emergent Reasoning Module
3
+ ------------------------
4
+ Implements emergent reasoning capabilities that arise from the interaction
5
+ of multiple reasoning strategies and patterns.
6
+ """
7
+
8
+ from typing import Dict, Any, List, Optional
9
+ from .base import ReasoningStrategy
10
+ from .meta import MetaLearningStrategy
11
+ from .chain_of_thought import ChainOfThoughtStrategy
12
+ from .tree_of_thoughts import TreeOfThoughtsStrategy
13
+
14
+ class EmergentReasoning(ReasoningStrategy):
15
+ """
16
+ A reasoning strategy that combines multiple approaches to discover
17
+ emergent patterns and solutions.
18
+ """
19
+
20
+ def __init__(self, config: Optional[Dict[str, Any]] = None):
21
+ """Initialize emergent reasoning with component strategies."""
22
+ super().__init__()
23
+ self.config = config or {}
24
+
25
+ # Initialize component strategies
26
+ self.meta_learner = MetaLearningStrategy()
27
+ self.chain_of_thought = ChainOfThoughtStrategy()
28
+ self.tree_of_thoughts = TreeOfThoughtsStrategy()
29
+
30
+ # Configure weights for strategy combination
31
+ self.weights = {
32
+ 'meta': 0.4,
33
+ 'chain': 0.3,
34
+ 'tree': 0.3
35
+ }
36
+
37
+ async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
38
+ """
39
+ Apply emergent reasoning by combining multiple strategies and
40
+ identifying patterns that emerge from their interaction.
41
+
42
+ Args:
43
+ query: The input query to reason about
44
+ context: Additional context and parameters
45
+
46
+ Returns:
47
+ Dict containing reasoning results and confidence scores
48
+ """
49
+ try:
50
+ # Get results from each strategy
51
+ meta_result = await self.meta_learner.reason(query, context)
52
+ chain_result = await self.chain_of_thought.reason(query, context)
53
+ tree_result = await self.tree_of_thoughts.reason(query, context)
54
+
55
+ # Combine results with weighted averaging
56
+ combined_answer = self._combine_results([
57
+ (meta_result.get('answer', ''), self.weights['meta']),
58
+ (chain_result.get('answer', ''), self.weights['chain']),
59
+ (tree_result.get('answer', ''), self.weights['tree'])
60
+ ])
61
+
62
+ # Calculate overall confidence
63
+ confidence = (
64
+ meta_result.get('confidence', 0) * self.weights['meta'] +
65
+ chain_result.get('confidence', 0) * self.weights['chain'] +
66
+ tree_result.get('confidence', 0) * self.weights['tree']
67
+ )
68
+
69
+ return {
70
+ 'answer': combined_answer,
71
+ 'confidence': confidence,
72
+ 'reasoning_path': {
73
+ 'meta': meta_result.get('reasoning_path'),
74
+ 'chain': chain_result.get('reasoning_path'),
75
+ 'tree': tree_result.get('reasoning_path')
76
+ },
77
+ 'emergent_patterns': self._identify_patterns([
78
+ meta_result, chain_result, tree_result
79
+ ])
80
+ }
81
+
82
+ except Exception as e:
83
+ return {
84
+ 'error': f"Emergent reasoning failed: {str(e)}",
85
+ 'confidence': 0.0
86
+ }
87
+
88
+ def _combine_results(self, weighted_results: List[tuple[str, float]]) -> str:
89
+ """Combine multiple reasoning results with weights."""
90
+ if not weighted_results:
91
+ return ""
92
+
93
+ # For now, use the highest weighted result
94
+ return max(weighted_results, key=lambda x: x[1])[0]
95
+
96
+ def _identify_patterns(self, results: List[Dict[str, Any]]) -> List[str]:
97
+ """Identify common patterns across different reasoning strategies."""
98
+ patterns = []
99
+
100
+ # Extract common themes or conclusions
101
+ answers = [r.get('answer', '') for r in results if r.get('answer')]
102
+ if len(set(answers)) == 1:
103
+ patterns.append("All strategies reached the same conclusion")
104
+ elif len(set(answers)) < len(answers):
105
+ patterns.append("Some strategies converged on similar conclusions")
106
+
107
+ # Look for common confidence patterns
108
+ confidences = [r.get('confidence', 0) for r in results]
109
+ avg_confidence = sum(confidences) / len(confidences) if confidences else 0
110
+ if avg_confidence > 0.8:
111
+ patterns.append("High confidence across all strategies")
112
+ elif avg_confidence < 0.3:
113
+ patterns.append("Low confidence across strategies")
114
+
115
+ return patterns