File size: 11,659 Bytes
dcb2a99
 
 
 
 
 
 
3ef1144
dcb2a99
 
 
 
 
 
 
 
3ef1144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef1144
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
Multi-Modal Reasoning Implementation
----------------------------------
Implements reasoning across different types of information.
"""

import logging
from typing import Dict, Any, List, Optional
from datetime import datetime
import json
import numpy as np
from .reasoning import ReasoningStrategy

class MultiModalReasoning(ReasoningStrategy):
    """Implements multi-modal reasoning across different types of information."""
    
    def __init__(self, config: Optional[Dict[str, Any]] = None):
        """Initialize multi-modal reasoning."""
        super().__init__()
        self.config = config or {}
        
        # Standard reasoning parameters
        self.min_confidence = self.config.get('min_confidence', 0.7)
        self.parallel_threshold = self.config.get('parallel_threshold', 3)
        self.learning_rate = self.config.get('learning_rate', 0.1)
        self.strategy_weights = self.config.get('strategy_weights', {
            "LOCAL_LLM": 0.8,
            "CHAIN_OF_THOUGHT": 0.6,
            "TREE_OF_THOUGHTS": 0.5,
            "META_LEARNING": 0.4
        })
        
        # Multi-modal specific parameters
        self.modality_weights = self.config.get('modality_weights', {
            'text': 0.8,
            'image': 0.7,
            'audio': 0.6,
            'video': 0.5,
            'structured': 0.7
        })
        self.cross_modal_threshold = self.config.get('cross_modal_threshold', 0.6)
        self.integration_steps = self.config.get('integration_steps', 3)
        self.alignment_method = self.config.get('alignment_method', 'attention')
    
    async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
        try:
            # Process different modalities
            modalities = await self._process_modalities(query, context)
            
            # Align across modalities
            alignment = await self._cross_modal_alignment(modalities, context)
            
            # Integrated analysis
            integration = await self._integrated_analysis(alignment, context)
            
            # Generate final response
            response = await self._generate_response(integration, context)
            
            return {
                "success": True,
                "answer": response["conclusion"],
                "modalities": modalities,
                "alignment": alignment,
                "integration": integration,
                "confidence": response["confidence"]
            }
        except Exception as e:
            logging.error(f"Error in multi-modal reasoning: {str(e)}")
            return {"success": False, "error": str(e)}

    async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
        """Process query across different modalities."""
        prompt = f"""
        Process query across modalities:
        Query: {query}
        Context: {json.dumps(context)}
        
        For each modality extract:
        1. [Type]: Modality type
        2. [Content]: Relevant content
        3. [Features]: Key features
        4. [Quality]: Content quality
        
        Format as:
        [M1]
        Type: ...
        Content: ...
        Features: ...
        Quality: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_modalities(response["answer"])

    async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        """Align information across different modalities."""
        try:
            # Extract modality types
            modal_types = list(modalities.keys())
            
            # Initialize alignment results
            alignments = []
            
            # Process each modality pair
            for i in range(len(modal_types)):
                for j in range(i + 1, len(modal_types)):
                    type1, type2 = modal_types[i], modal_types[j]
                    
                    # Get items from each modality
                    items1 = modalities[type1]
                    items2 = modalities[type2]
                    
                    # Find alignments between items
                    for item1 in items1:
                        for item2 in items2:
                            similarity = self._calculate_similarity(item1, item2)
                            if similarity > self.cross_modal_threshold:  # Threshold for alignment
                                alignments.append({
                                    "type1": type1,
                                    "type2": type2,
                                    "item1": item1,
                                    "item2": item2,
                                    "similarity": similarity
                                })
            
            # Sort alignments by similarity
            alignments.sort(key=lambda x: x["similarity"], reverse=True)
            
            return alignments
            
        except Exception as e:
            logging.error(f"Error in cross-modal alignment: {str(e)}")
            return []

    def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
        """Calculate similarity between two items from different modalities."""
        try:
            # Extract content from items
            content1 = str(item1.get("content", ""))
            content2 = str(item2.get("content", ""))
            
            # Calculate basic similarity (can be enhanced with more sophisticated methods)
            common_words = set(content1.lower().split()) & set(content2.lower().split())
            total_words = set(content1.lower().split()) | set(content2.lower().split())
            
            if not total_words:
                return 0.0
                
            return len(common_words) / len(total_words)
            
        except Exception as e:
            logging.error(f"Error calculating similarity: {str(e)}")
            return 0.0

    async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
        prompt = f"""
        Perform integrated multi-modal analysis:
        Alignment: {json.dumps(alignment)}
        Context: {json.dumps(context)}
        
        For each insight:
        1. [Insight]: Key finding
        2. [Sources]: Contributing modalities
        3. [Support]: Supporting evidence
        4. [Confidence]: Confidence level
        
        Format as:
        [I1]
        Insight: ...
        Sources: ...
        Support: ...
        Confidence: ...
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_integration(response["answer"])

    async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
        prompt = f"""
        Generate unified multi-modal response:
        Integration: {json.dumps(integration)}
        Context: {json.dumps(context)}
        
        Provide:
        1. Main conclusion
        2. Modal contributions
        3. Integration benefits
        4. Confidence level (0-1)
        """
        
        response = await context["groq_api"].predict(prompt)
        return self._parse_response(response["answer"])

    def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
        """Parse modalities from response."""
        modalities = {}
        current_modality = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[M'):
                if current_modality:
                    if current_modality["type"] not in modalities:
                        modalities[current_modality["type"]] = []
                    modalities[current_modality["type"]].append(current_modality)
                current_modality = {
                    "type": "",
                    "content": "",
                    "features": "",
                    "quality": ""
                }
            elif current_modality:
                if line.startswith('Type:'):
                    current_modality["type"] = line[5:].strip()
                elif line.startswith('Content:'):
                    current_modality["content"] = line[8:].strip()
                elif line.startswith('Features:'):
                    current_modality["features"] = line[9:].strip()
                elif line.startswith('Quality:'):
                    current_modality["quality"] = line[8:].strip()
        
        if current_modality:
            if current_modality["type"] not in modalities:
                modalities[current_modality["type"]] = []
            modalities[current_modality["type"]].append(current_modality)
        
        return modalities

    def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
        """Parse integration from response."""
        integration = []
        current_insight = None
        
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('[I'):
                if current_insight:
                    integration.append(current_insight)
                current_insight = {
                    "insight": "",
                    "sources": "",
                    "support": "",
                    "confidence": 0.0
                }
            elif current_insight:
                if line.startswith('Insight:'):
                    current_insight["insight"] = line[8:].strip()
                elif line.startswith('Sources:'):
                    current_insight["sources"] = line[8:].strip()
                elif line.startswith('Support:'):
                    current_insight["support"] = line[8:].strip()
                elif line.startswith('Confidence:'):
                    try:
                        current_insight["confidence"] = float(line[11:].strip())
                    except:
                        pass
        
        if current_insight:
            integration.append(current_insight)
        
        return integration

    def _parse_response(self, response: str) -> Dict[str, Any]:
        """Parse response from response."""
        response_dict = {
            "conclusion": "",
            "modal_contributions": [],
            "integration_benefits": [],
            "confidence": 0.0
        }
        
        mode = None
        for line in response.split('\n'):
            line = line.strip()
            if not line:
                continue
                
            if line.startswith('Conclusion:'):
                response_dict["conclusion"] = line[11:].strip()
            elif line.startswith('Modal Contributions:'):
                mode = "modal"
            elif line.startswith('Integration Benefits:'):
                mode = "integration"
            elif line.startswith('Confidence:'):
                try:
                    response_dict["confidence"] = float(line[11:].strip())
                except:
                    response_dict["confidence"] = 0.5
                mode = None
            elif mode == "modal" and line.startswith('- '):
                response_dict["modal_contributions"].append(line[2:].strip())
            elif mode == "integration" and line.startswith('- '):
                response_dict["integration_benefits"].append(line[2:].strip())
        
        return response_dict