File size: 20,759 Bytes
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5283a41
898d453
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed5850e
 
 
 
1671ec3
 
 
 
ed5850e
dcb2a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
defdab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""
Agentic Orchestrator for Advanced AI System
-----------------------------------------
Manages and coordinates multiple agentic components:
1. Task Planning & Decomposition
2. Resource Management
3. Agent Communication
4. State Management
5. Error Recovery
6. Performance Monitoring
"""

import logging
from typing import Dict, Any, List, Optional, Union, TypeVar, Generic
from dataclasses import dataclass, field
from enum import Enum
import json
import asyncio
from datetime import datetime
import uuid
from concurrent.futures import ThreadPoolExecutor
import networkx as nx
from collections import defaultdict
import numpy as np

from reasoning import UnifiedReasoningEngine as ReasoningEngine, StrategyType as ReasoningMode
from reasoning.meta_learning import MetaLearningStrategy

T = TypeVar('T')

class AgentRole(Enum):
    """Different roles an agent can take."""
    PLANNER = "planner"
    EXECUTOR = "executor"
    MONITOR = "monitor"
    COORDINATOR = "coordinator"
    LEARNER = "learner"

class AgentState(Enum):
    """Possible states of an agent."""
    IDLE = "idle"
    BUSY = "busy"
    ERROR = "error"
    LEARNING = "learning"
    TERMINATED = "terminated"

class TaskPriority(Enum):
    """Task priority levels."""
    LOW = 0
    MEDIUM = 1
    HIGH = 2
    CRITICAL = 3

@dataclass
class AgentMetadata:
    """Metadata about an agent."""
    id: str
    role: AgentRole
    capabilities: List[str]
    state: AgentState
    load: float
    last_active: datetime
    metrics: Dict[str, float]

@dataclass
class Task:
    """Represents a task in the system."""
    id: str
    description: str
    priority: TaskPriority
    dependencies: List[str]
    assigned_to: Optional[str]
    state: str
    created_at: datetime
    deadline: Optional[datetime]
    metadata: Dict[str, Any]

class AgentOrchestrator:
    """Advanced orchestrator for managing agentic system."""
    
    def __init__(self, config: Dict[str, Any] = None):
        self.config = config or {}
        
        # Core components
        self.agents: Dict[str, AgentMetadata] = {}
        self.tasks: Dict[str, Task] = {}
        self.task_graph = nx.DiGraph()
        
        # State management
        self.state_history: List[Dict[str, Any]] = []
        self.global_state: Dict[str, Any] = {}
        
        # Resource management
        self.resource_pool: Dict[str, Any] = {}
        self.resource_locks: Dict[str, asyncio.Lock] = {}
        
        # Communication
        self.message_queue = asyncio.Queue()
        self.event_bus = asyncio.Queue()
        
        # Performance monitoring
        self.metrics = defaultdict(list)
        self.performance_log = []
        
        # Error handling
        self.error_handlers: Dict[str, callable] = {}
        self.recovery_strategies: Dict[str, callable] = {}
        
        # Async support
        self.executor = ThreadPoolExecutor(max_workers=4)
        self.lock = asyncio.Lock()
        
        # Logging
        self.logger = logging.getLogger(__name__)
        
        # Initialize components
        self._init_components()

    def _init_components(self):
        """Initialize orchestrator components."""
        # Initialize reasoning engine
        self.reasoning_engine = ReasoningEngine(
            min_confidence=0.7,
            parallel_threshold=5,
            learning_rate=0.1,
            strategy_weights={
                "LOCAL_LLM": 2.0,
                "CHAIN_OF_THOUGHT": 1.0,
                "TREE_OF_THOUGHTS": 1.0,
                "META_LEARNING": 1.5
            }
        )
        
        # Initialize meta-learning
        self.meta_learning = MetaLearningStrategy()
        
        # Register basic error handlers
        self._register_error_handlers()

    async def register_agent(
        self,
        role: AgentRole,
        capabilities: List[str]
    ) -> str:
        """Register a new agent with the orchestrator."""
        agent_id = str(uuid.uuid4())
        
        agent = AgentMetadata(
            id=agent_id,
            role=role,
            capabilities=capabilities,
            state=AgentState.IDLE,
            load=0.0,
            last_active=datetime.now(),
            metrics={}
        )
        
        async with self.lock:
            self.agents[agent_id] = agent
            self.logger.info(f"Registered new agent: {agent_id} with role {role}")
            
        return agent_id

    async def submit_task(
        self,
        description: str,
        priority: TaskPriority = TaskPriority.MEDIUM,
        dependencies: List[str] = None,
        deadline: Optional[datetime] = None,
        metadata: Dict[str, Any] = None
    ) -> str:
        """Submit a new task to the orchestrator."""
        task_id = str(uuid.uuid4())
        
        task = Task(
            id=task_id,
            description=description,
            priority=priority,
            dependencies=dependencies or [],
            assigned_to=None,
            state="pending",
            created_at=datetime.now(),
            deadline=deadline,
            metadata=metadata or {}
        )
        
        async with self.lock:
            self.tasks[task_id] = task
            self._update_task_graph(task)
            
        # Trigger task planning
        await self._plan_task_execution(task_id)
        
        return task_id

    async def _plan_task_execution(self, task_id: str) -> None:
        """Plan the execution of a task."""
        task = self.tasks[task_id]
        
        # Check dependencies
        if not await self._check_dependencies(task):
            self.logger.info(f"Task {task_id} waiting for dependencies")
            return
        
        # Find suitable agent
        agent_id = await self._find_suitable_agent(task)
        if not agent_id:
            self.logger.warning(f"No suitable agent found for task {task_id}")
            return
        
        # Assign task
        await self._assign_task(task_id, agent_id)

    async def _check_dependencies(self, task: Task) -> bool:
        """Check if all task dependencies are satisfied."""
        for dep_id in task.dependencies:
            if dep_id not in self.tasks:
                return False
            if self.tasks[dep_id].state != "completed":
                return False
        return True

    async def _find_suitable_agent(self, task: Task) -> Optional[str]:
        """Find the most suitable agent for a task."""
        best_agent = None
        best_score = float('-inf')
        
        for agent_id, agent in self.agents.items():
            if agent.state != AgentState.IDLE:
                continue
                
            score = await self._calculate_agent_suitability(agent, task)
            if score > best_score:
                best_score = score
                best_agent = agent_id
                
        return best_agent

    async def _calculate_agent_suitability(
        self,
        agent: AgentMetadata,
        task: Task
    ) -> float:
        """Calculate how suitable an agent is for a task."""
        # Base score on capabilities match
        capability_score = sum(
            1 for cap in task.metadata.get("required_capabilities", [])
            if cap in agent.capabilities
        )
        
        # Consider agent load
        load_score = 1 - agent.load
        
        # Consider agent's recent performance
        performance_score = sum(agent.metrics.values()) / len(agent.metrics) if agent.metrics else 0.5
        
        # Weighted combination
        weights = self.config.get("agent_selection_weights", {
            "capabilities": 0.5,
            "load": 0.3,
            "performance": 0.2
        })
        
        return (
            weights["capabilities"] * capability_score +
            weights["load"] * load_score +
            weights["performance"] * performance_score
        )

    async def _assign_task(self, task_id: str, agent_id: str) -> None:
        """Assign a task to an agent."""
        async with self.lock:
            task = self.tasks[task_id]
            agent = self.agents[agent_id]
            
            task.assigned_to = agent_id
            task.state = "assigned"
            agent.state = AgentState.BUSY
            agent.load += 1
            agent.last_active = datetime.now()
            
            self.logger.info(f"Assigned task {task_id} to agent {agent_id}")
            
            # Notify agent
            await self.message_queue.put({
                "type": "task_assignment",
                "task_id": task_id,
                "agent_id": agent_id,
                "timestamp": datetime.now()
            })

    def _update_task_graph(self, task: Task) -> None:
        """Update the task dependency graph."""
        self.task_graph.add_node(task.id, task=task)
        for dep_id in task.dependencies:
            self.task_graph.add_edge(dep_id, task.id)

    async def _monitor_system_state(self):
        """Monitor overall system state."""
        while True:
            try:
                # Collect agent states
                agent_states = {
                    agent_id: {
                        "state": agent.state,
                        "load": agent.load,
                        "metrics": agent.metrics
                    }
                    for agent_id, agent in self.agents.items()
                }
                
                # Collect task states
                task_states = {
                    task_id: {
                        "state": task.state,
                        "assigned_to": task.assigned_to,
                        "deadline": task.deadline
                    }
                    for task_id, task in self.tasks.items()
                }
                
                # Update global state
                self.global_state = {
                    "timestamp": datetime.now(),
                    "agents": agent_states,
                    "tasks": task_states,
                    "resource_usage": self._get_resource_usage(),
                    "performance_metrics": self._calculate_performance_metrics()
                }
                
                # Archive state
                self.state_history.append(self.global_state.copy())
                
                # Trim history if too long
                if len(self.state_history) > 1000:
                    self.state_history = self.state_history[-1000:]
                
                # Check for anomalies
                await self._check_anomalies()
                
                await asyncio.sleep(1)  # Monitor frequency
                
            except Exception as e:
                self.logger.error(f"Error in system monitoring: {e}")
                await self._handle_error("monitoring_error", e)

    def _get_resource_usage(self) -> Dict[str, float]:
        """Get current resource usage statistics."""
        return {
            "cpu_usage": sum(agent.load for agent in self.agents.values()) / len(self.agents),
            "memory_usage": len(self.state_history) * 1000,  # Rough estimate
            "queue_size": self.message_queue.qsize()
        }

    def _calculate_performance_metrics(self) -> Dict[str, float]:
        """Calculate current performance metrics."""
        metrics = {}
        
        # Task completion rate
        completed_tasks = sum(1 for task in self.tasks.values() if task.state == "completed")
        total_tasks = len(self.tasks)
        metrics["task_completion_rate"] = completed_tasks / max(1, total_tasks)
        
        # Average task duration
        durations = []
        for task in self.tasks.values():
            if task.state == "completed" and "completion_time" in task.metadata:
                duration = (task.metadata["completion_time"] - task.created_at).total_seconds()
                durations.append(duration)
        metrics["avg_task_duration"] = sum(durations) / len(durations) if durations else 0
        
        # Agent utilization
        metrics["agent_utilization"] = sum(agent.load for agent in self.agents.values()) / len(self.agents)
        
        return metrics

    async def _check_anomalies(self):
        """Check for system anomalies."""
        # Check for overloaded agents
        for agent_id, agent in self.agents.items():
            if agent.load > 0.9:  # 90% load threshold
                await self._handle_overload(agent_id)
        
        # Check for stalled tasks
        now = datetime.now()
        for task_id, task in self.tasks.items():
            if task.state == "assigned":
                duration = (now - task.created_at).total_seconds()
                if duration > 3600:  # 1 hour threshold
                    await self._handle_stalled_task(task_id)
        
        # Check for missed deadlines
        for task_id, task in self.tasks.items():
            if task.deadline and now > task.deadline and task.state != "completed":
                await self._handle_missed_deadline(task_id)

    async def _handle_overload(self, agent_id: str):
        """Handle an overloaded agent."""
        agent = self.agents[agent_id]
        
        # Try to redistribute tasks
        assigned_tasks = [
            task_id for task_id, task in self.tasks.items()
            if task.assigned_to == agent_id and task.state == "assigned"
        ]
        
        for task_id in assigned_tasks:
            # Find another suitable agent
            new_agent_id = await self._find_suitable_agent(self.tasks[task_id])
            if new_agent_id:
                await self._reassign_task(task_id, new_agent_id)

    async def _handle_stalled_task(self, task_id: str):
        """Handle a stalled task."""
        task = self.tasks[task_id]
        
        # First, try to ping the assigned agent
        if task.assigned_to:
            agent = self.agents[task.assigned_to]
            if agent.state == AgentState.ERROR:
                # Agent is in error state, reassign task
                await self._reassign_task(task_id, None)
            else:
                # Request status update from agent
                await self.message_queue.put({
                    "type": "status_request",
                    "task_id": task_id,
                    "agent_id": task.assigned_to,
                    "timestamp": datetime.now()
                })

    async def _handle_missed_deadline(self, task_id: str):
        """Handle a missed deadline."""
        task = self.tasks[task_id]
        
        # Log the incident
        self.logger.warning(f"Task {task_id} missed deadline: {task.deadline}")
        
        # Update task priority to CRITICAL
        task.priority = TaskPriority.CRITICAL
        
        # If task is assigned, try to speed it up
        if task.assigned_to:
            await self.message_queue.put({
                "type": "expedite_request",
                "task_id": task_id,
                "agent_id": task.assigned_to,
                "timestamp": datetime.now()
            })
        else:
            # If not assigned, try to assign to fastest available agent
            await self._plan_task_execution(task_id)

    async def _reassign_task(self, task_id: str, new_agent_id: Optional[str] = None):
        """Reassign a task to a new agent."""
        task = self.tasks[task_id]
        old_agent_id = task.assigned_to
        
        if old_agent_id:
            # Update old agent
            old_agent = self.agents[old_agent_id]
            old_agent.load -= 1
            if old_agent.load <= 0:
                old_agent.state = AgentState.IDLE
        
        if new_agent_id is None:
            # Find new suitable agent
            new_agent_id = await self._find_suitable_agent(task)
        
        if new_agent_id:
            # Assign to new agent
            await self._assign_task(task_id, new_agent_id)
        else:
            # No suitable agent found, mark task as pending
            task.state = "pending"
            task.assigned_to = None

    def _register_error_handlers(self):
        """Register basic error handlers."""
        self.error_handlers.update({
            "monitoring_error": self._handle_monitoring_error,
            "agent_error": self._handle_agent_error,
            "task_error": self._handle_task_error,
            "resource_error": self._handle_resource_error
        })
        
        self.recovery_strategies.update({
            "agent_recovery": self._recover_agent,
            "task_recovery": self._recover_task,
            "resource_recovery": self._recover_resource
        })

    async def _handle_error(self, error_type: str, error: Exception):
        """Handle an error using registered handlers."""
        handler = self.error_handlers.get(error_type)
        if handler:
            try:
                await handler(error)
            except Exception as e:
                self.logger.error(f"Error in error handler: {e}")
        else:
            self.logger.error(f"No handler for error type: {error_type}")
            self.logger.error(f"Error: {error}")

    async def _handle_monitoring_error(self, error: Exception):
        """Handle monitoring system errors."""
        self.logger.error(f"Monitoring error: {error}")
        # Implement recovery logic
        pass

    async def _handle_agent_error(self, error: Exception):
        """Handle agent-related errors."""
        self.logger.error(f"Agent error: {error}")
        # Implement recovery logic
        pass

    async def _handle_task_error(self, error: Exception):
        """Handle task-related errors."""
        self.logger.error(f"Task error: {error}")
        # Implement recovery logic
        pass

    async def _handle_resource_error(self, error: Exception):
        """Handle resource-related errors."""
        self.logger.error(f"Resource error: {error}")
        # Implement recovery logic
        pass

    async def _recover_agent(self, agent_id: str):
        """Recover a failed agent."""
        try:
            agent = self.agents[agent_id]
            
            # Log recovery attempt
            self.logger.info(f"Attempting to recover agent {agent_id}")
            
            # Reset agent state
            agent.state = AgentState.IDLE
            agent.load = 0
            agent.last_active = datetime.now()
            
            # Reassign any tasks that were assigned to this agent
            for task_id, task in self.tasks.items():
                if task.assigned_to == agent_id:
                    await self._reassign_task(task_id)
            
            # Update metrics
            agent.metrics["recovery_attempts"] = agent.metrics.get("recovery_attempts", 0) + 1
            
            self.logger.info(f"Successfully recovered agent {agent_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"Failed to recover agent {agent_id}: {e}")
            return False

    async def _recover_task(self, task_id: str):
        """Recover a failed task."""
        try:
            task = self.tasks[task_id]
            
            # Log recovery attempt
            self.logger.info(f"Attempting to recover task {task_id}")
            
            # Reset task state
            task.state = "pending"
            task.assigned_to = None
            
            # Try to reassign the task
            await self._reassign_task(task_id)
            
            self.logger.info(f"Successfully recovered task {task_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"Failed to recover task {task_id}: {e}")
            return False

    async def _recover_resource(self, resource_id: str):
        """Recover a failed resource."""
        try:
            # Log recovery attempt
            self.logger.info(f"Attempting to recover resource {resource_id}")
            
            # Release any locks on the resource
            if resource_id in self.resource_locks:
                lock = self.resource_locks[resource_id]
                if lock.locked():
                    lock.release()
            
            # Reset resource state
            if resource_id in self.resource_pool:
                self.resource_pool[resource_id] = {
                    "state": "available",
                    "last_error": None,
                    "last_recovery": datetime.now()
                }
            
            self.logger.info(f"Successfully recovered resource {resource_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"Failed to recover resource {resource_id}: {e}")
            return False