PersonaChatEngine_hf-serve / model_loader.py
m97j's picture
Set config.py match with env variables such as HF_TOKEN
90bc37b
raw
history blame
2.22 kB
import os, json, torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from config import BASE_MODEL, ADAPTER_MODEL, DEVICE, HF_TOKEN
def get_current_branch():
if os.path.exists("current_branch.txt"):
with open("current_branch.txt", "r") as f:
return f.read().strip()
return "latest"
class ModelWrapper:
def __init__(self):
flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
self.num_flags = len(self.flags_order)
# 토큰 전달
self.tokenizer = AutoTokenizer.from_pretrained(
ADAPTER_MODEL,
use_fast=True,
token=HF_TOKEN
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
branch = get_current_branch()
base = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
device_map="auto",
trust_remote_code=True,
token=HF_TOKEN
)
self.model = PeftModel.from_pretrained(
base,
ADAPTER_MODEL,
revision=branch,
device_map="auto",
token=HF_TOKEN
)
hidden_size = self.model.config.hidden_size
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
if os.path.exists("delta_head.pt"):
self.model.delta_head.load_state_dict(torch.load("delta_head.pt", map_location=DEVICE))
if os.path.exists("flag_head.pt"):
self.model.flag_head.load_state_dict(torch.load("flag_head.pt", map_location=DEVICE))
if os.path.exists("flag_threshold_head.pt"):
self.model.flag_threshold_head.load_state_dict(torch.load("flag_threshold_head.pt", map_location=DEVICE))
self.model.eval()
def get(self):
return self.tokenizer, self.model, self.flags_order