File size: 2,223 Bytes
0fc77f3
 
 
 
90bc37b
0fc77f3
 
 
 
 
90bc37b
0fc77f3
 
 
 
 
 
 
90bc37b
 
 
 
 
 
0fc77f3
 
 
 
 
90bc37b
 
 
 
 
 
 
 
 
 
 
 
 
0fc77f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os, json, torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from config import BASE_MODEL, ADAPTER_MODEL, DEVICE, HF_TOKEN

def get_current_branch():
    if os.path.exists("current_branch.txt"):
        with open("current_branch.txt", "r") as f:
            return f.read().strip()
    return "latest"

class ModelWrapper:
    def __init__(self):
        flags_path = os.path.join(os.path.dirname(__file__), "flags.json")
        self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
        self.num_flags = len(self.flags_order)

        # 토큰 전달
        self.tokenizer = AutoTokenizer.from_pretrained(
            ADAPTER_MODEL,
            use_fast=True,
            token=HF_TOKEN
        )
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "right"

        branch = get_current_branch()
        base = AutoModelForCausalLM.from_pretrained(
            BASE_MODEL,
            device_map="auto",
            trust_remote_code=True,
            token=HF_TOKEN
        )
        self.model = PeftModel.from_pretrained(
            base,
            ADAPTER_MODEL,
            revision=branch,
            device_map="auto",
            token=HF_TOKEN
        )

        hidden_size = self.model.config.hidden_size
        self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
        self.model.flag_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)
        self.model.flag_threshold_head = nn.Linear(hidden_size, self.num_flags).to(DEVICE)

        if os.path.exists("delta_head.pt"):
            self.model.delta_head.load_state_dict(torch.load("delta_head.pt", map_location=DEVICE))
        if os.path.exists("flag_head.pt"):
            self.model.flag_head.load_state_dict(torch.load("flag_head.pt", map_location=DEVICE))
        if os.path.exists("flag_threshold_head.pt"):
            self.model.flag_threshold_head.load_state_dict(torch.load("flag_threshold_head.pt", map_location=DEVICE))

        self.model.eval()

    def get(self):
        return self.tokenizer, self.model, self.flags_order