Spaces:
Running
Running
Set config.py match with env variables such as HF_TOKEN
Browse files- config.py +17 -9
- model_loader.py +21 -5
config.py
CHANGED
@@ -1,17 +1,25 @@
|
|
|
|
1 |
import torch
|
|
|
2 |
|
3 |
-
#
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
# 장치 설정
|
8 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
# 토크나이저/모델 공통
|
11 |
-
MAX_LENGTH = 1024
|
12 |
-
NUM_FLAGS = 7 # flags.json 길이와 일치
|
13 |
|
14 |
# 생성 파라미터
|
15 |
-
GEN_MAX_NEW_TOKENS = 200
|
16 |
-
GEN_TEMPERATURE = 0.7
|
17 |
-
GEN_TOP_P = 0.9
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
from dotenv import load_dotenv
|
4 |
|
5 |
+
# .env 파일 로드 (로컬 개발 시)
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
# 모델 경로 (환경변수 없으면 기본값 사용)
|
9 |
+
BASE_MODEL = os.getenv("BASE_MODEL", "Qwen/Qwen2.5-3B-Instruct")
|
10 |
+
ADAPTER_MODEL = os.getenv("ADAPTER_MODEL", "m97j/npc-LoRA-fps")
|
11 |
|
12 |
# 장치 설정
|
13 |
+
DEVICE = os.getenv("DEVICE", "cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
# 토크나이저/모델 공통
|
16 |
+
MAX_LENGTH = int(os.getenv("MAX_LENGTH", 1024))
|
17 |
+
NUM_FLAGS = int(os.getenv("NUM_FLAGS", 7)) # flags.json 길이와 일치
|
18 |
|
19 |
# 생성 파라미터
|
20 |
+
GEN_MAX_NEW_TOKENS = int(os.getenv("GEN_MAX_NEW_TOKENS", 200))
|
21 |
+
GEN_TEMPERATURE = float(os.getenv("GEN_TEMPERATURE", 0.7))
|
22 |
+
GEN_TOP_P = float(os.getenv("GEN_TOP_P", 0.9))
|
23 |
+
|
24 |
+
# Hugging Face Token (Private 모델 접근용)
|
25 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
model_loader.py
CHANGED
@@ -2,13 +2,13 @@ import os, json, torch
|
|
2 |
import torch.nn as nn
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
-
from config import BASE_MODEL, ADAPTER_MODEL, DEVICE
|
6 |
|
7 |
def get_current_branch():
|
8 |
if os.path.exists("current_branch.txt"):
|
9 |
with open("current_branch.txt", "r") as f:
|
10 |
return f.read().strip()
|
11 |
-
return "latest"
|
12 |
|
13 |
class ModelWrapper:
|
14 |
def __init__(self):
|
@@ -16,14 +16,30 @@ class ModelWrapper:
|
|
16 |
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
|
17 |
self.num_flags = len(self.flags_order)
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
if self.tokenizer.pad_token is None:
|
21 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
22 |
self.tokenizer.padding_side = "right"
|
23 |
|
24 |
branch = get_current_branch()
|
25 |
-
base = AutoModelForCausalLM.from_pretrained(
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
hidden_size = self.model.config.hidden_size
|
29 |
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
|
|
|
2 |
import torch.nn as nn
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from peft import PeftModel
|
5 |
+
from config import BASE_MODEL, ADAPTER_MODEL, DEVICE, HF_TOKEN
|
6 |
|
7 |
def get_current_branch():
|
8 |
if os.path.exists("current_branch.txt"):
|
9 |
with open("current_branch.txt", "r") as f:
|
10 |
return f.read().strip()
|
11 |
+
return "latest"
|
12 |
|
13 |
class ModelWrapper:
|
14 |
def __init__(self):
|
|
|
16 |
self.flags_order = json.load(open(flags_path, encoding="utf-8"))["ALL_FLAGS"]
|
17 |
self.num_flags = len(self.flags_order)
|
18 |
|
19 |
+
# 토큰 전달
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
21 |
+
ADAPTER_MODEL,
|
22 |
+
use_fast=True,
|
23 |
+
token=HF_TOKEN
|
24 |
+
)
|
25 |
if self.tokenizer.pad_token is None:
|
26 |
self.tokenizer.pad_token = self.tokenizer.eos_token
|
27 |
self.tokenizer.padding_side = "right"
|
28 |
|
29 |
branch = get_current_branch()
|
30 |
+
base = AutoModelForCausalLM.from_pretrained(
|
31 |
+
BASE_MODEL,
|
32 |
+
device_map="auto",
|
33 |
+
trust_remote_code=True,
|
34 |
+
token=HF_TOKEN
|
35 |
+
)
|
36 |
+
self.model = PeftModel.from_pretrained(
|
37 |
+
base,
|
38 |
+
ADAPTER_MODEL,
|
39 |
+
revision=branch,
|
40 |
+
device_map="auto",
|
41 |
+
token=HF_TOKEN
|
42 |
+
)
|
43 |
|
44 |
hidden_size = self.model.config.hidden_size
|
45 |
self.model.delta_head = nn.Linear(hidden_size, 2).to(DEVICE)
|