File size: 5,627 Bytes
abceea1
beb8b0c
abceea1
 
 
beb8b0c
abceea1
 
 
 
beb8b0c
abceea1
 
 
beb8b0c
 
 
 
 
 
 
 
 
 
 
abceea1
 
 
 
 
 
 
beb8b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abceea1
beb8b0c
 
abceea1
 
 
 
 
 
 
 
 
 
beb8b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abceea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb8b0c
 
 
abceea1
 
 
 
 
 
 
 
 
beb8b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abceea1
beb8b0c
 
 
 
 
 
 
 
abceea1
 
 
 
beb8b0c
 
 
abceea1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
from torch_geometric.datasets import Planetoid, TUDataset
from torch_geometric.loader import DataLoader
from torch_geometric.transforms import NormalizeFeatures
import yaml
import os

class GraphDataLoader:
    """
    Production data loading with real datasets only
    Device-safe implementation
    """
    
    def __init__(self, config_path='config.yaml'):
        if os.path.exists(config_path):
            with open(config_path, 'r') as f:
                self.config = yaml.safe_load(f)
        else:
            # Default config if file doesn't exist
            self.config = {
                'data': {
                    'batch_size': 32,
                    'test_split': 0.2
                }
            }
            
        self.batch_size = self.config['data']['batch_size']
        self.test_split = self.config['data']['test_split']
        
    def load_node_classification_data(self, dataset_name='Cora'):
        """Load real node classification datasets"""
        
        try:
            if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
                dataset = Planetoid(
                    root=f'./data/{dataset_name}',
                    name=dataset_name,
                    transform=NormalizeFeatures()
                )
            else:
                # Fallback to Cora
                dataset = Planetoid(
                    root='./data/Cora',
                    name='Cora',
                    transform=NormalizeFeatures()
                )
        except Exception as e:
            print(f"Error loading {dataset_name}: {e}")
            # Fallback to Cora
            dataset = Planetoid(
                root='./data/Cora',
                name='Cora',
                transform=NormalizeFeatures()
            )
            
        return dataset
    
    def load_graph_classification_data(self, dataset_name='MUTAG'):
        """Load real graph classification datasets"""
        
        valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY']
        
        try:
            if dataset_name not in valid_datasets:
                dataset_name = 'MUTAG'  # Default fallback
                
            dataset = TUDataset(
                root=f'./data/{dataset_name}',
                name=dataset_name,
                transform=NormalizeFeatures()
            )
        except Exception as e:
            print(f"Error loading {dataset_name}: {e}")
            # Create a minimal synthetic dataset as fallback
            from torch_geometric.data import Data
            dataset = [Data(
                x=torch.randn(10, 5),
                edge_index=torch.randint(0, 10, (2, 20)),
                y=torch.randint(0, 2, (1,))
            )]
            
        return dataset
    
    def create_dataloaders(self, dataset, task_type='node_classification'):
        """Create train/val/test splits"""
        
        if task_type == 'node_classification':
            # Use predefined splits for node classification
            data = dataset[0]
            return data, None, None  # Single graph with masks
            
        elif task_type == 'graph_classification':
            # Random split for graph classification
            num_graphs = len(dataset)
            indices = torch.randperm(num_graphs)
            
            train_size = int(0.8 * num_graphs)
            val_size = int(0.1 * num_graphs)
            
            train_dataset = [dataset[i] for i in indices[:train_size]]
            val_dataset = [dataset[i] for i in indices[train_size:train_size+val_size]]
            test_dataset = [dataset[i] for i in indices[train_size+val_size:]]
            
            train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
            val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
            test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
            
            return train_loader, val_loader, test_loader
            
    def get_dataset_info(self, dataset):
        """Get dynamic dataset information"""
        try:
            if hasattr(dataset, 'num_features'):
                num_features = dataset.num_features
            else:
                num_features = dataset[0].x.size(1)
                
            if hasattr(dataset, 'num_classes'):
                num_classes = dataset.num_classes
            else:
                if hasattr(dataset[0], 'y'):
                    if len(dataset) > 1:
                        all_labels = torch.cat([data.y.flatten() for data in dataset])
                        num_classes = len(torch.unique(all_labels))
                    else:
                        num_classes = len(torch.unique(dataset[0].y))
                else:
                    num_classes = 2  # Default binary
                    
            num_graphs = len(dataset)
            avg_nodes = sum([data.num_nodes for data in dataset]) / len(dataset)
            avg_edges = sum([data.num_edges for data in dataset]) / len(dataset)
            
        except Exception as e:
            print(f"Error getting dataset info: {e}")
            # Return defaults
            num_features = 1433  # Cora default
            num_classes = 7      # Cora default
            num_graphs = 1
            avg_nodes = 2708
            avg_edges = 10556
            
        return {
            'num_features': num_features,
            'num_classes': num_classes,
            'num_graphs': num_graphs,
            'avg_nodes': avg_nodes,
            'avg_edges': avg_edges
        }