Create data/loader.py
Browse files- data/loader.py +104 -0
data/loader.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch_geometric.datasets import Planetoid, TUDataset, Reddit, Flickr
|
3 |
+
from torch_geometric.loader import DataLoader
|
4 |
+
from torch_geometric.transforms import NormalizeFeatures
|
5 |
+
import yaml
|
6 |
+
|
7 |
+
class GraphDataLoader:
|
8 |
+
"""
|
9 |
+
Production data loading with real datasets only
|
10 |
+
No synthetic or hardcoded data
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self, config_path='config.yaml'):
|
14 |
+
with open(config_path, 'r') as f:
|
15 |
+
self.config = yaml.safe_load(f)
|
16 |
+
|
17 |
+
self.batch_size = self.config['data']['batch_size']
|
18 |
+
self.test_split = self.config['data']['test_split']
|
19 |
+
|
20 |
+
def load_node_classification_data(self, dataset_name='Cora'):
|
21 |
+
"""Load real node classification datasets"""
|
22 |
+
|
23 |
+
if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
|
24 |
+
dataset = Planetoid(
|
25 |
+
root=f'./data/{dataset_name}',
|
26 |
+
name=dataset_name,
|
27 |
+
transform=NormalizeFeatures()
|
28 |
+
)
|
29 |
+
elif dataset_name == 'Reddit':
|
30 |
+
dataset = Reddit(
|
31 |
+
root='./data/Reddit',
|
32 |
+
transform=NormalizeFeatures()
|
33 |
+
)
|
34 |
+
elif dataset_name == 'Flickr':
|
35 |
+
dataset = Flickr(
|
36 |
+
root='./data/Flickr',
|
37 |
+
transform=NormalizeFeatures()
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
raise ValueError(f"Unknown dataset: {dataset_name}")
|
41 |
+
|
42 |
+
return dataset
|
43 |
+
|
44 |
+
def load_graph_classification_data(self, dataset_name='MUTAG'):
|
45 |
+
"""Load real graph classification datasets"""
|
46 |
+
|
47 |
+
valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY']
|
48 |
+
|
49 |
+
if dataset_name not in valid_datasets:
|
50 |
+
raise ValueError(f"Dataset must be one of {valid_datasets}")
|
51 |
+
|
52 |
+
dataset = TUDataset(
|
53 |
+
root=f'./data/{dataset_name}',
|
54 |
+
name=dataset_name,
|
55 |
+
transform=NormalizeFeatures()
|
56 |
+
)
|
57 |
+
|
58 |
+
return dataset
|
59 |
+
|
60 |
+
def create_dataloaders(self, dataset, task_type='node_classification'):
|
61 |
+
"""Create train/val/test splits"""
|
62 |
+
|
63 |
+
if task_type == 'node_classification':
|
64 |
+
# Use predefined splits for node classification
|
65 |
+
data = dataset[0]
|
66 |
+
return data, None, None # Single graph with masks
|
67 |
+
|
68 |
+
elif task_type == 'graph_classification':
|
69 |
+
# Random split for graph classification
|
70 |
+
num_graphs = len(dataset)
|
71 |
+
indices = torch.randperm(num_graphs)
|
72 |
+
|
73 |
+
train_size = int(0.8 * num_graphs)
|
74 |
+
val_size = int(0.1 * num_graphs)
|
75 |
+
|
76 |
+
train_dataset = dataset[indices[:train_size]]
|
77 |
+
val_dataset = dataset[indices[train_size:train_size+val_size]]
|
78 |
+
test_dataset = dataset[indices[train_size+val_size:]]
|
79 |
+
|
80 |
+
train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
|
81 |
+
val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
|
82 |
+
test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
|
83 |
+
|
84 |
+
return train_loader, val_loader, test_loader
|
85 |
+
|
86 |
+
def get_dataset_info(self, dataset):
|
87 |
+
"""Get dynamic dataset information"""
|
88 |
+
if hasattr(dataset, 'num_features'):
|
89 |
+
num_features = dataset.num_features
|
90 |
+
else:
|
91 |
+
num_features = dataset[0].x.size(1)
|
92 |
+
|
93 |
+
if hasattr(dataset, 'num_classes'):
|
94 |
+
num_classes = dataset.num_classes
|
95 |
+
else:
|
96 |
+
num_classes = len(torch.unique(dataset[0].y))
|
97 |
+
|
98 |
+
return {
|
99 |
+
'num_features': num_features,
|
100 |
+
'num_classes': num_classes,
|
101 |
+
'num_graphs': len(dataset),
|
102 |
+
'avg_nodes': sum([data.num_nodes for data in dataset]) / len(dataset),
|
103 |
+
'avg_edges': sum([data.num_edges for data in dataset]) / len(dataset)
|
104 |
+
}
|