Create data/loader.py
Browse files- data/loader.py +104 -0
    	
        data/loader.py
    ADDED
    
    | @@ -0,0 +1,104 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            from torch_geometric.datasets import Planetoid, TUDataset, Reddit, Flickr
         | 
| 3 | 
            +
            from torch_geometric.loader import DataLoader
         | 
| 4 | 
            +
            from torch_geometric.transforms import NormalizeFeatures
         | 
| 5 | 
            +
            import yaml
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            class GraphDataLoader:
         | 
| 8 | 
            +
                """
         | 
| 9 | 
            +
                Production data loading with real datasets only
         | 
| 10 | 
            +
                No synthetic or hardcoded data
         | 
| 11 | 
            +
                """
         | 
| 12 | 
            +
                
         | 
| 13 | 
            +
                def __init__(self, config_path='config.yaml'):
         | 
| 14 | 
            +
                    with open(config_path, 'r') as f:
         | 
| 15 | 
            +
                        self.config = yaml.safe_load(f)
         | 
| 16 | 
            +
                        
         | 
| 17 | 
            +
                    self.batch_size = self.config['data']['batch_size']
         | 
| 18 | 
            +
                    self.test_split = self.config['data']['test_split']
         | 
| 19 | 
            +
                    
         | 
| 20 | 
            +
                def load_node_classification_data(self, dataset_name='Cora'):
         | 
| 21 | 
            +
                    """Load real node classification datasets"""
         | 
| 22 | 
            +
                    
         | 
| 23 | 
            +
                    if dataset_name in ['Cora', 'CiteSeer', 'PubMed']:
         | 
| 24 | 
            +
                        dataset = Planetoid(
         | 
| 25 | 
            +
                            root=f'./data/{dataset_name}',
         | 
| 26 | 
            +
                            name=dataset_name,
         | 
| 27 | 
            +
                            transform=NormalizeFeatures()
         | 
| 28 | 
            +
                        )
         | 
| 29 | 
            +
                    elif dataset_name == 'Reddit':
         | 
| 30 | 
            +
                        dataset = Reddit(
         | 
| 31 | 
            +
                            root='./data/Reddit',
         | 
| 32 | 
            +
                            transform=NormalizeFeatures()
         | 
| 33 | 
            +
                        )
         | 
| 34 | 
            +
                    elif dataset_name == 'Flickr':
         | 
| 35 | 
            +
                        dataset = Flickr(
         | 
| 36 | 
            +
                            root='./data/Flickr', 
         | 
| 37 | 
            +
                            transform=NormalizeFeatures()
         | 
| 38 | 
            +
                        )
         | 
| 39 | 
            +
                    else:
         | 
| 40 | 
            +
                        raise ValueError(f"Unknown dataset: {dataset_name}")
         | 
| 41 | 
            +
                        
         | 
| 42 | 
            +
                    return dataset
         | 
| 43 | 
            +
                
         | 
| 44 | 
            +
                def load_graph_classification_data(self, dataset_name='MUTAG'):
         | 
| 45 | 
            +
                    """Load real graph classification datasets"""
         | 
| 46 | 
            +
                    
         | 
| 47 | 
            +
                    valid_datasets = ['MUTAG', 'ENZYMES', 'PROTEINS', 'COLLAB', 'IMDB-BINARY']
         | 
| 48 | 
            +
                    
         | 
| 49 | 
            +
                    if dataset_name not in valid_datasets:
         | 
| 50 | 
            +
                        raise ValueError(f"Dataset must be one of {valid_datasets}")
         | 
| 51 | 
            +
                        
         | 
| 52 | 
            +
                    dataset = TUDataset(
         | 
| 53 | 
            +
                        root=f'./data/{dataset_name}',
         | 
| 54 | 
            +
                        name=dataset_name,
         | 
| 55 | 
            +
                        transform=NormalizeFeatures()
         | 
| 56 | 
            +
                    )
         | 
| 57 | 
            +
                    
         | 
| 58 | 
            +
                    return dataset
         | 
| 59 | 
            +
                
         | 
| 60 | 
            +
                def create_dataloaders(self, dataset, task_type='node_classification'):
         | 
| 61 | 
            +
                    """Create train/val/test splits"""
         | 
| 62 | 
            +
                    
         | 
| 63 | 
            +
                    if task_type == 'node_classification':
         | 
| 64 | 
            +
                        # Use predefined splits for node classification
         | 
| 65 | 
            +
                        data = dataset[0]
         | 
| 66 | 
            +
                        return data, None, None  # Single graph with masks
         | 
| 67 | 
            +
                        
         | 
| 68 | 
            +
                    elif task_type == 'graph_classification':
         | 
| 69 | 
            +
                        # Random split for graph classification
         | 
| 70 | 
            +
                        num_graphs = len(dataset)
         | 
| 71 | 
            +
                        indices = torch.randperm(num_graphs)
         | 
| 72 | 
            +
                        
         | 
| 73 | 
            +
                        train_size = int(0.8 * num_graphs)
         | 
| 74 | 
            +
                        val_size = int(0.1 * num_graphs)
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        train_dataset = dataset[indices[:train_size]]
         | 
| 77 | 
            +
                        val_dataset = dataset[indices[train_size:train_size+val_size]]
         | 
| 78 | 
            +
                        test_dataset = dataset[indices[train_size+val_size:]]
         | 
| 79 | 
            +
                        
         | 
| 80 | 
            +
                        train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
         | 
| 81 | 
            +
                        val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
         | 
| 82 | 
            +
                        test_loader = DataLoader(test_dataset, batch_size=self.batch_size, shuffle=False)
         | 
| 83 | 
            +
                        
         | 
| 84 | 
            +
                        return train_loader, val_loader, test_loader
         | 
| 85 | 
            +
                        
         | 
| 86 | 
            +
                def get_dataset_info(self, dataset):
         | 
| 87 | 
            +
                    """Get dynamic dataset information"""
         | 
| 88 | 
            +
                    if hasattr(dataset, 'num_features'):
         | 
| 89 | 
            +
                        num_features = dataset.num_features
         | 
| 90 | 
            +
                    else:
         | 
| 91 | 
            +
                        num_features = dataset[0].x.size(1)
         | 
| 92 | 
            +
                        
         | 
| 93 | 
            +
                    if hasattr(dataset, 'num_classes'):
         | 
| 94 | 
            +
                        num_classes = dataset.num_classes
         | 
| 95 | 
            +
                    else:
         | 
| 96 | 
            +
                        num_classes = len(torch.unique(dataset[0].y))
         | 
| 97 | 
            +
                        
         | 
| 98 | 
            +
                    return {
         | 
| 99 | 
            +
                        'num_features': num_features,
         | 
| 100 | 
            +
                        'num_classes': num_classes,
         | 
| 101 | 
            +
                        'num_graphs': len(dataset),
         | 
| 102 | 
            +
                        'avg_nodes': sum([data.num_nodes for data in dataset]) / len(dataset),
         | 
| 103 | 
            +
                        'avg_edges': sum([data.num_edges for data in dataset]) / len(dataset)
         | 
| 104 | 
            +
                    }
         |