ChatGLM3 / tool_using /README.md
kakuguo's picture
Upload 52 files
afd4069

A newer version of the Gradio SDK is available: 5.5.0

Upgrade

工具调用

本文档将介绍如何使用 ChatGLM3-6B 进行工具调用。目前只有 ChatGLM3-6B 模型支持工具调用,而 ChatGLM3-6B-Base 和 ChatGLM3-6B-32K 模型不支持。

构建 System Prompt

这里以两个工具调用为例,首先准备好要构建的数据的描述信息。

tools = [
    {
        "name": "track",
        "description": "追踪指定股票的实时价格",
        "parameters": {
            "type": "object",
            "properties": {
                "symbol": {
                    "description": "需要追踪的股票代码"
                }
            },
            "required": ['symbol']
        }
    },
    {
        "name": "text-to-speech",
        "description": "将文本转换为语音",
        "parameters": {
            "type": "object",
            "properties": {
                "text": {
                    "description": "需要转换成语音的文本"
                },
                "voice": {
                    "description": "要使用的语音类型(男声、女声等)"
                },
                "speed": {
                    "description": "语音的速度(快、中等、慢等)"
                }
            },
            "required": ['text']
        }
    }
]
system_info = {"role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools}

请确保工具的定义格式与例子中一致以获得最优的性能

提出问题

注意:目前 ChatGLM3-6B 的工具调用只支持通过 chat 方法,不支持 stream_chat 方法。

history = [system_info]
query = "帮我查询股票10111的价格"
response, history = model.chat(tokenizer, query, history=history)
print(response)

这里期望得到的输出为

{"name": "track", "parameters": {"symbol": "10111"}}

这表示模型需要调用工具 track,并且需要传入参数 symbol

调用工具,生成回复

这里需要自行实现调用工具的逻辑。假设已经得到了返回结果,将结果以 json 格式返回给模型并得到回复。

result = json.dumps({"price": 12412}, ensure_ascii=False)
response, history = model.chat(tokenizer, result, history=history, role="observation")
print(response)

这里 role="observation" 表示输入的是工具调用的返回值而不是用户输入,不能省略。

期望得到的输出为

根据您的查询,经过API的调用,股票10111的价格是12412。

这表示本次工具调用已经结束,模型根据返回结果生成回复。对于比较复杂的问题,模型可能需要进行多次工具调用。这时,可以根据返回的 responsestr 还是 dict 来判断返回的是生成的回复还是工具调用请求。