|
# 工具调用 |
|
本文档将介绍如何使用 ChatGLM3-6B 进行工具调用。目前只有 ChatGLM3-6B 模型支持工具调用,而 ChatGLM3-6B-Base 和 ChatGLM3-6B-32K 模型不支持。 |
|
|
|
## 构建 System Prompt |
|
这里以两个工具调用为例,首先准备好要构建的数据的描述信息。 |
|
|
|
```python |
|
tools = [ |
|
{ |
|
"name": "track", |
|
"description": "追踪指定股票的实时价格", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"symbol": { |
|
"description": "需要追踪的股票代码" |
|
} |
|
}, |
|
"required": ['symbol'] |
|
} |
|
}, |
|
{ |
|
"name": "text-to-speech", |
|
"description": "将文本转换为语音", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"text": { |
|
"description": "需要转换成语音的文本" |
|
}, |
|
"voice": { |
|
"description": "要使用的语音类型(男声、女声等)" |
|
}, |
|
"speed": { |
|
"description": "语音的速度(快、中等、慢等)" |
|
} |
|
}, |
|
"required": ['text'] |
|
} |
|
} |
|
] |
|
system_info = {"role": "system", "content": "Answer the following questions as best as you can. You have access to the following tools:", "tools": tools} |
|
``` |
|
请确保工具的定义格式与例子中一致以获得最优的性能 |
|
|
|
## 提出问题 |
|
注意:目前 ChatGLM3-6B 的工具调用只支持通过 `chat` 方法,不支持 `stream_chat` 方法。 |
|
```python |
|
history = [system_info] |
|
query = "帮我查询股票10111的价格" |
|
response, history = model.chat(tokenizer, query, history=history) |
|
print(response) |
|
``` |
|
这里期望得到的输出为 |
|
```json |
|
{"name": "track", "parameters": {"symbol": "10111"}} |
|
``` |
|
这表示模型需要调用工具 `track`,并且需要传入参数 `symbol`。 |
|
|
|
## 调用工具,生成回复 |
|
这里需要自行实现调用工具的逻辑。假设已经得到了返回结果,将结果以 json 格式返回给模型并得到回复。 |
|
```python |
|
result = json.dumps({"price": 12412}, ensure_ascii=False) |
|
response, history = model.chat(tokenizer, result, history=history, role="observation") |
|
print(response) |
|
``` |
|
这里 `role="observation"` 表示输入的是工具调用的返回值而不是用户输入,不能省略。 |
|
|
|
期望得到的输出为 |
|
``` |
|
根据您的查询,经过API的调用,股票10111的价格是12412。 |
|
``` |
|
|
|
这表示本次工具调用已经结束,模型根据返回结果生成回复。对于比较复杂的问题,模型可能需要进行多次工具调用。这时,可以根据返回的 `response` 是 `str` 还是 `dict` 来判断返回的是生成的回复还是工具调用请求。 |