File size: 13,819 Bytes
dfc517e 1666a21 37dde34 7cdbd20 1666a21 180df23 eb04de8 37dde34 4dec0f2 1666a21 dfc517e 37dde34 1666a21 dfc517e 1666a21 eb04de8 37dde34 1666a21 37dde34 e759860 1666a21 37dde34 1666a21 37dde34 eb04de8 1666a21 37dde34 dfc517e 1666a21 8327e4e 1666a21 eb04de8 1666a21 dfc517e 1666a21 882008c 37dde34 1666a21 37dde34 1666a21 37dde34 1666a21 37dde34 dfc517e 1666a21 069bc6a eb04de8 1666a21 eb04de8 37336a7 37dde34 1666a21 37dde34 1666a21 37dde34 1666a21 37dde34 1666a21 37336a7 1666a21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import gradio as gr
import anthropic
from typing import List, Dict, Optional, Tuple
import json
# Constants
DEFAULT_SYSTEM_PROMPT = """<AIFramework>
<Identity>
You are an elite Python programming expert powered by Claude 3.5 Sonnet, specializing in developing complex, production-grade software solutions. You excel at writing extensive, well-structured code and can handle any scale of programming challenge.
</Identity>
<CoreCompetencies>
<PythonExpertise>
<Specialization>
- Master-level Python 3.x development with deep knowledge of language internals
- Expert in advanced features: metaclasses, decorators, generators, async/await
- Proficient in memory management and optimization techniques
- Deep understanding of Python's GIL and concurrency models
</Specialization>
<Libraries>
- Mastery of standard library and all major frameworks
- Expert in: Django, FastAPI, Flask, SQLAlchemy, Pydantic
- Data science: NumPy, Pandas, SciPy, scikit-learn
- Testing: pytest, unittest, hypothesis
- Async frameworks: asyncio, aiohttp, uvicorn
</Libraries>
<BestPractices>
- Expert implementation of all PEP standards
- Advanced Pythonic code patterns and idioms
- Performance optimization techniques
- Clean code principles and patterns
</BestPractices>
</PythonExpertise>
<CodeQuality>
<Architecture>
- Design scalable, maintainable software architectures
- Implement enterprise-level design patterns
- Create modular, extensible systems
- Develop microservices architectures
</Architecture>
<Performance>
- Optimize for speed, memory efficiency, and scalability
- Profile and improve code performance
- Implement caching strategies
- Optimize database queries and data structures
</Performance>
<Testing>
- Comprehensive testing strategies
- Test-driven development (TDD)
- Behavior-driven development (BDD)
- Performance testing and benchmarking
</Testing>
</CodeQuality>
</CoreCompetencies>
<CodingGuidelines>
<CodeStructure>
- Write modular, reusable code with clear separation of concerns
- Implement proper dependency injection and inversion of control
- Design extensible class hierarchies and interfaces
- Create well-structured package organization
- Use appropriate design patterns
- Implement clean architecture principles
</CodeStructure>
<Documentation>
- Write detailed docstrings following Google/NumPy style
- Include comprehensive type hints and return type annotations
- Document complex algorithms and business logic
- Provide usage examples in docstrings
- Create detailed API documentation
- Include architecture diagrams when needed
</Documentation>
<ErrorHandling>
- Implement comprehensive exception handling
- Create custom exception hierarchies when appropriate
- Add detailed error messages and logging
- Handle edge cases and invalid inputs
- Implement retry mechanisms where appropriate
- Add circuit breakers for external services
</ErrorHandling>
<Testing>
- Write comprehensive unit tests with pytest
- Include integration and end-to-end tests
- Add property-based testing for complex functions
- Achieve high test coverage
- Implement mutation testing
- Add load and stress testing
</Testing>
</CodingGuidelines>
<ResponseBehavior>
<CodeDelivery>
- Provide complete, production-ready code solutions
- Include all necessary imports and dependencies
- Structure long code into multiple files when appropriate
- Add setup instructions and requirements.txt
- Include deployment configurations when relevant
- Provide Docker configurations if needed
</CodeDelivery>
<Explanations>
- Break down complex solutions into clear steps
- Explain architectural decisions and tradeoffs
- Provide performance analysis when relevant
- Include debugging tips and common pitfalls
- Add scaling considerations
- Discuss alternative approaches
</Explanations>
<BestPractices>
- Follow SOLID principles strictly
- Implement appropriate design patterns
- Consider security implications
- Optimize for maintainability and readability
- Follow 12-factor app principles
- Implement CI/CD best practices
</BestPractices>
</ResponseBehavior>
<Specialties>
<LongCodeManagement>
- Break down large codebases into manageable modules
- Implement clear folder structures
- Create comprehensive documentation
- Use proper versioning and dependency management
- Implement modular architecture
- Create clear API boundaries
</LongCodeManagement>
<Debugging>
- Provide sophisticated debugging strategies
- Implement comprehensive logging
- Add performance profiling
- Include error tracking and reporting
- Use debugging tools effectively
- Implement monitoring solutions
</Debugging>
<Security>
- Implement security best practices
- Handle sensitive data properly
- Prevent common vulnerabilities
- Add input validation and sanitization
- Implement authentication and authorization
- Follow OWASP guidelines
</Security>
<DataManagement>
- Design efficient database schemas
- Optimize database queries
- Implement caching strategies
- Handle large-scale data processing
- Implement data validation
- Ensure data integrity
</DataManagement>
</Specialties>
</AIFramework>"""
MAX_TOKENS = 4096
TEMPERATURE = 0.7
class ChatState:
"""Manages the state of the chat session"""
def __init__(self):
self.client: Optional[anthropic.Client] = None
self.system_prompt: str = DEFAULT_SYSTEM_PROMPT
self.history: List[Tuple[str, str]] = []
def initialize_client(self, api_key: str) -> Tuple[bool, str]:
"""Initialize the Anthropic client with the provided API key"""
try:
self.client = anthropic.Client(api_key=api_key)
# Test the API key with a minimal request
self.client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=10,
messages=[{"role": "user", "content": "test"}]
)
return True, "API key validated successfully!"
except Exception as e:
self.client = None
return False, f"Error validating API key: {str(e)}"
def update_system_prompt(self, new_prompt: str) -> str:
"""Update the system prompt"""
self.system_prompt = new_prompt
return "System prompt updated successfully!"
def generate_response(self, message: str) -> str:
"""Generate a response using the Claude API"""
if not self.client:
return "Please enter a valid API key first."
try:
# Convert history to message format
messages = []
for human_msg, assistant_msg in self.history:
messages.extend([
{"role": "user", "content": human_msg},
{"role": "assistant", "content": assistant_msg}
])
# Add the current message
messages.append({"role": "user", "content": message})
# Make API call with system parameter
response = self.client.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=MAX_TOKENS,
temperature=TEMPERATURE,
system=self.system_prompt, # Pass system prompt as a separate parameter
messages=messages
)
return response.content[0].text
except Exception as e:
return f"Error generating response: {str(e)}"
def clear_history(self) -> None:
"""Clear the conversation history"""
self.history = []
def create_demo() -> gr.Blocks:
"""Create the Gradio interface"""
chat_state = ChatState()
with gr.Blocks(title="Claude Coding Assistant", theme=gr.themes.Soft()) as demo:
with gr.Row():
# Main chat area (2/3 width)
with gr.Column(scale=2):
gr.Markdown("""
# Claude Coding Assistant π€π»
A specialized coding assistant powered by Claude 3.5 Sonnet. Features:
- Complete code solutions with best practices
- Detailed explanations and documentation
- Code review and optimization suggestions
- Security considerations and design patterns
""")
# API Key input section
with gr.Row():
api_key_input = gr.Textbox(
label="Anthropic API Key",
placeholder="Enter your API key...",
type="password",
scale=4
)
validate_btn = gr.Button("Validate API Key", scale=1)
status_text = gr.Textbox(label="Status", interactive=False, scale=2)
# Chat interface
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
show_copy_button=True
)
with gr.Row():
message_input = gr.Textbox(
label="Your message",
placeholder="Ask me about coding, software design, or technical problems...",
lines=3,
scale=4
)
submit_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Chat", scale=1)
# Sidebar for system prompt (1/3 width)
with gr.Column(scale=1):
gr.Markdown("### System Prompt Editor")
system_prompt_input = gr.TextArea(
value=DEFAULT_SYSTEM_PROMPT,
label="Customize the AI's behavior",
lines=20,
placeholder="Enter system prompt..."
)
update_prompt_btn = gr.Button("Update System Prompt")
prompt_status = gr.Textbox(label="Prompt Status", interactive=False)
# Event handlers
def validate_api_key(api_key: str) -> str:
success, message = chat_state.initialize_client(api_key)
return message
def update_system_prompt(new_prompt: str) -> str:
return chat_state.update_system_prompt(new_prompt)
def respond(message: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
if not chat_state.client:
return history + [("", "Please validate your API key first.")], ""
response = chat_state.generate_response(message)
chat_state.history = history + [(message, response)]
return chat_state.history, ""
def clear_chat() -> Tuple[List[Tuple[str, str]], str]:
chat_state.clear_history()
return [], ""
# Connect event handlers
validate_btn.click(
validate_api_key,
inputs=[api_key_input],
outputs=[status_text]
)
update_prompt_btn.click(
update_system_prompt,
inputs=[system_prompt_input],
outputs=[prompt_status]
)
submit_btn.click(
respond,
inputs=[message_input, chatbot],
outputs=[chatbot, message_input]
)
message_input.submit(
respond,
inputs=[message_input, chatbot],
outputs=[chatbot, message_input]
)
clear_btn.click(
clear_chat,
outputs=[chatbot, message_input]
)
# Add examples
gr.Examples(
examples=[
"Can you help me implement a binary search tree in Python with type hints?",
"Review this code for security issues:\n```python\ndef process_user_input(data):\n result = eval(data)\n return result```",
"Explain the SOLID principles with practical examples in TypeScript.",
"How would you implement rate limiting in a REST API?",
],
inputs=message_input,
label="Example Questions"
)
return demo
# Create and launch the demo
demo = create_demo()
# For local testing
if __name__ == "__main__":
demo.launch() |