File size: 8,765 Bytes
ed879c6 89bc55c 20c84bf 89bc55c ed879c6 89bc55c e5bb249 89bc55c e5bb249 89bc55c e5bb249 89bc55c e5bb249 89bc55c 20c84bf 89bc55c 4ad3262 89bc55c 4ad3262 89bc55c 4ad3262 89bc55c 4ad3262 89bc55c 4ad3262 89bc55c e5bb249 89bc55c e5bb249 89bc55c e5bb249 89bc55c 20c84bf 89bc55c be8a1ca 89bc55c 21df540 89bc55c be8a1ca 89bc55c be8a1ca 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c ed879c6 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c be8a1ca 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c 20c84bf 89bc55c ed879c6 89bc55c ed879c6 21df540 89bc55c 20c84bf 89bc55c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import base64
import io
import os
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from litellm import completion
# Code Execution Environment
class CodeEnvironment:
"""Safe environment for executing code with data analysis capabilities"""
def __init__(self):
self.globals = {
'pd': pd,
'np': np,
'plt': plt,
'sns': sns,
}
self.locals = {}
def execute(self, code: str, df: pd.DataFrame = None) -> Dict[str, Any]:
"""Execute code and capture outputs"""
if df is not None:
self.globals['df'] = df
# Capture output
output_buffer = io.StringIO()
result = {'output': '', 'figures': [], 'error': None}
try:
# Execute code
exec(code, self.globals, self.locals)
# Capture figures
for i in plt.get_fignums():
fig = plt.figure(i)
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
result['figures'].append(f"data:image/png;base64,{img_str}")
plt.close(fig)
# Get printed output
result['output'] = output_buffer.getvalue()
except Exception as e:
result['error'] = str(e)
finally:
output_buffer.close()
return result
@dataclass
class Tool:
"""Tool for data analysis"""
name: str
description: str
func: Callable
class AnalysisAgent:
"""Agent that can analyze data and execute code"""
def __init__(
self,
model_id: str = "gpt-4o-mini",
temperature: float = 0.7,
):
self.model_id = model_id
self.temperature = temperature
self.tools: List[Tool] = []
self.code_env = CodeEnvironment()
def add_tool(self, name: str, description: str, func: Callable) -> None:
"""Add a tool to the agent"""
self.tools.append(Tool(name=name, description=description, func=func))
def run(self, prompt: str, df: pd.DataFrame = None) -> str:
"""Run analysis with code execution"""
messages = [
{"role": "system", "content": self._get_system_prompt()},
{"role": "user", "content": prompt}
]
try:
# Get response from model
response = completion(
model=self.model_id,
messages=messages,
temperature=self.temperature,
)
analysis = response.choices[0].message.content
# Extract code blocks
code_blocks = self._extract_code(analysis)
# Execute code and capture results
results = []
for code in code_blocks:
result = self.code_env.execute(code, df)
if result['error']:
results.append(f"Error executing code: {result['error']}")
else:
# Add output and figures
if result['output']:
results.append(result['output'])
for fig in result['figures']:
results.append(f"")
# Combine analysis and results
return analysis + "\n\n" + "\n".join(results)
except Exception as e:
return f"Error: {str(e)}"
def _get_system_prompt(self) -> str:
"""Get system prompt with tools and capabilities"""
tools_desc = "\n".join([
f"- {tool.name}: {tool.description}"
for tool in self.tools
])
return f"""You are a data analysis assistant.
Available tools:
{tools_desc}
Capabilities:
- Data analysis (pandas, numpy)
- Visualization (matplotlib, seaborn)
- Statistical analysis (scipy)
- Machine learning (sklearn)
When writing code:
- Use markdown code blocks
- Create clear visualizations
- Include explanations
- Handle errors gracefully
"""
@staticmethod
def _extract_code(text: str) -> List[str]:
"""Extract Python code blocks from markdown"""
import re
pattern = r'```python\n(.*?)```'
return re.findall(pattern, text, re.DOTALL)
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
"""Process uploaded file into DataFrame"""
if not file:
return None
try:
if file.name.endswith('.csv'):
return pd.read_csv(file.name)
elif file.name.endswith(('.xlsx', '.xls')):
return pd.read_excel(file.name)
except Exception as e:
print(f"Error reading file: {str(e)}")
return None
def analyze_data(
file: gr.File,
query: str,
api_key: str,
temperature: float = 0.7,
) -> str:
"""Process user request and generate analysis"""
if not api_key:
return "Error: Please provide an API key."
if not file:
return "Error: Please upload a file."
try:
# Set up environment
os.environ["OPENAI_API_KEY"] = api_key
# Create agent
agent = AnalysisAgent(
model_id="gpt-4o-mini",
temperature=temperature
)
# Process file
df = process_file(file)
if df is None:
return "Error: Could not process file."
# Build context
file_info = f"""
File: {file.name}
Shape: {df.shape}
Columns: {', '.join(df.columns)}
Column Types:
{chr(10).join([f'- {col}: {dtype}' for col, dtype in df.dtypes.items()])}
"""
# Run analysis
prompt = f"""
{file_info}
The data is loaded in a pandas DataFrame called 'df'.
User request: {query}
Please analyze the data and provide:
1. Key insights and findings
2. Whenever the user request is unclear, proactively interpret them such that it becomes analyzable.
"""
return agent.run(prompt, df=df)
except Exception as e:
return f"Error occurred: {str(e)}"
def create_interface():
"""Create Gradio interface"""
with gr.Blocks(title="AI Data Analysis Assistant") as interface:
gr.Markdown("""
# AI Data Analysis Assistant
Upload your data file and get AI-powered analysis with visualizations.
**Features:**
- Data analysis and visualization
- Statistical analysis
- Machine learning capabilities
**Note**: Requires your own OpenAi API key.
""")
with gr.Row():
with gr.Column():
file = gr.File(
label="Upload Data File",
file_types=[".csv", ".xlsx", ".xls"]
)
query = gr.Textbox(
label="What would you like to analyze?",
placeholder="e.g., Create visualizations showing relationships between variables",
lines=3
)
api_key = gr.Textbox(
label="API Key (Required)",
placeholder="Your API key",
type="password"
)
temperature = gr.Slider(
label="Temperature",
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1
)
analyze_btn = gr.Button("Analyze")
with gr.Column():
output = gr.Markdown(label="Output")
analyze_btn.click(
analyze_data,
inputs=[file, query, api_key, temperature],
outputs=output
)
gr.Examples(
examples=[
[None, "Show the distribution of values and key statistics"],
[None, "Create a correlation analysis with heatmap"],
[None, "Identify and visualize any outliers in the data"],
[None, "Generate summary plots for the main variables"],
],
inputs=[file, query]
)
return interface
if __name__ == "__main__":
interface = create_interface()
interface.launch() |