Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,163 @@
|
|
|
|
|
|
1 |
import os
|
2 |
from dataclasses import dataclass
|
3 |
from typing import Any, Callable, Dict, List, Optional
|
4 |
|
5 |
import gradio as gr
|
|
|
|
|
6 |
import pandas as pd
|
7 |
-
import
|
8 |
from litellm import completion
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
@dataclass
|
12 |
class Tool:
|
13 |
-
"""
|
14 |
name: str
|
15 |
description: str
|
16 |
func: Callable
|
17 |
|
18 |
-
class
|
19 |
-
"""
|
20 |
|
21 |
def __init__(
|
22 |
self,
|
23 |
model_id: str = "gpt-4o-mini",
|
24 |
temperature: float = 0.7,
|
25 |
-
max_steps: int = 5
|
26 |
):
|
27 |
self.model_id = model_id
|
28 |
self.temperature = temperature
|
29 |
-
self.max_steps = max_steps
|
30 |
self.tools: List[Tool] = []
|
|
|
31 |
|
32 |
def add_tool(self, name: str, description: str, func: Callable) -> None:
|
33 |
"""Add a tool to the agent"""
|
34 |
self.tools.append(Tool(name=name, description=description, func=func))
|
35 |
|
36 |
-
def run(self, prompt: str,
|
37 |
-
"""Run
|
38 |
messages = [
|
39 |
{"role": "system", "content": self._get_system_prompt()},
|
40 |
{"role": "user", "content": prompt}
|
41 |
]
|
42 |
|
43 |
try:
|
|
|
44 |
response = completion(
|
45 |
model=self.model_id,
|
46 |
messages=messages,
|
47 |
temperature=self.temperature,
|
48 |
)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
return f"Error: {str(e)}"
|
52 |
-
|
53 |
def _get_system_prompt(self) -> str:
|
54 |
-
"""Get
|
55 |
tools_desc = "\n".join([
|
56 |
f"- {tool.name}: {tool.description}"
|
57 |
for tool in self.tools
|
58 |
])
|
59 |
|
60 |
-
return f"""You are a
|
61 |
|
62 |
Available tools:
|
63 |
{tools_desc}
|
64 |
|
65 |
-
|
66 |
-
- Data analysis
|
67 |
-
- Visualization
|
68 |
-
-
|
69 |
-
-
|
70 |
-
|
71 |
-
Provide clear explanations and code examples."""
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
buffer = []
|
80 |
-
df.info(buf=buffer)
|
81 |
-
return "\n".join(buffer)
|
82 |
-
return "Unknown analysis type"
|
83 |
-
|
84 |
-
def plot_data(df: pd.DataFrame, plot_type: str) -> None:
|
85 |
-
"""Basic plotting function"""
|
86 |
-
import matplotlib.pyplot as plt
|
87 |
-
import seaborn as sns
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
plt.tight_layout()
|
96 |
|
97 |
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
|
98 |
"""Process uploaded file into DataFrame"""
|
99 |
if not file:
|
100 |
return None
|
101 |
-
|
102 |
try:
|
103 |
if file.name.endswith('.csv'):
|
104 |
return pd.read_csv(file.name)
|
@@ -118,32 +177,20 @@ def analyze_data(
|
|
118 |
|
119 |
if not api_key:
|
120 |
return "Error: Please provide an API key."
|
121 |
-
|
122 |
if not file:
|
123 |
return "Error: Please upload a file."
|
124 |
-
|
125 |
try:
|
126 |
# Set up environment
|
127 |
os.environ["OPENAI_API_KEY"] = api_key
|
128 |
|
129 |
# Create agent
|
130 |
-
agent =
|
131 |
model_id="gpt-4o-mini",
|
132 |
temperature=temperature
|
133 |
)
|
134 |
|
135 |
-
# Add tools
|
136 |
-
agent.add_tool(
|
137 |
-
"analyze_dataframe",
|
138 |
-
"Analyze DataFrame with various metrics",
|
139 |
-
analyze_dataframe
|
140 |
-
)
|
141 |
-
agent.add_tool(
|
142 |
-
"plot_data",
|
143 |
-
"Create various plots from DataFrame",
|
144 |
-
plot_data
|
145 |
-
)
|
146 |
-
|
147 |
# Process file
|
148 |
df = process_file(file)
|
149 |
if df is None:
|
@@ -168,13 +215,12 @@ def analyze_data(
|
|
168 |
User request: {query}
|
169 |
|
170 |
Please analyze the data and provide:
|
171 |
-
1.
|
172 |
-
2. Code
|
173 |
-
3.
|
174 |
-
4. Key insights and findings
|
175 |
"""
|
176 |
|
177 |
-
return agent.run(prompt)
|
178 |
|
179 |
except Exception as e:
|
180 |
return f"Error occurred: {str(e)}"
|
@@ -186,14 +232,14 @@ def create_interface():
|
|
186 |
gr.Markdown("""
|
187 |
# AI Data Analysis Assistant
|
188 |
|
189 |
-
Upload your data file and
|
190 |
|
191 |
**Features:**
|
192 |
- Data analysis and visualization
|
193 |
- Statistical analysis
|
194 |
- Machine learning capabilities
|
195 |
|
196 |
-
**Note**: Requires your own
|
197 |
""")
|
198 |
|
199 |
with gr.Row():
|
@@ -232,10 +278,10 @@ def create_interface():
|
|
232 |
|
233 |
gr.Examples(
|
234 |
examples=[
|
235 |
-
[None, "Show
|
236 |
-
[None, "
|
237 |
-
[None, "Identify outliers
|
238 |
-
[None, "
|
239 |
],
|
240 |
inputs=[file, query]
|
241 |
)
|
|
|
1 |
+
import base64
|
2 |
+
import io
|
3 |
import os
|
4 |
from dataclasses import dataclass
|
5 |
from typing import Any, Callable, Dict, List, Optional
|
6 |
|
7 |
import gradio as gr
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import numpy as np
|
10 |
import pandas as pd
|
11 |
+
import seaborn as sns
|
12 |
from litellm import completion
|
13 |
|
14 |
+
|
15 |
+
# Code Execution Environment
|
16 |
+
class CodeEnvironment:
|
17 |
+
"""Safe environment for executing code with data analysis capabilities"""
|
18 |
+
|
19 |
+
def __init__(self):
|
20 |
+
self.globals = {
|
21 |
+
'pd': pd,
|
22 |
+
'np': np,
|
23 |
+
'plt': plt,
|
24 |
+
'sns': sns,
|
25 |
+
}
|
26 |
+
self.locals = {}
|
27 |
+
|
28 |
+
def execute(self, code: str, df: pd.DataFrame = None) -> Dict[str, Any]:
|
29 |
+
"""Execute code and capture outputs"""
|
30 |
+
if df is not None:
|
31 |
+
self.globals['df'] = df
|
32 |
+
|
33 |
+
# Capture output
|
34 |
+
output_buffer = io.StringIO()
|
35 |
+
result = {'output': '', 'figures': [], 'error': None}
|
36 |
+
|
37 |
+
try:
|
38 |
+
# Execute code
|
39 |
+
exec(code, self.globals, self.locals)
|
40 |
+
|
41 |
+
# Capture figures
|
42 |
+
for i in plt.get_fignums():
|
43 |
+
fig = plt.figure(i)
|
44 |
+
buf = io.BytesIO()
|
45 |
+
fig.savefig(buf, format='png')
|
46 |
+
buf.seek(0)
|
47 |
+
img_str = base64.b64encode(buf.read()).decode()
|
48 |
+
result['figures'].append(f"data:image/png;base64,{img_str}")
|
49 |
+
plt.close(fig)
|
50 |
+
|
51 |
+
# Get printed output
|
52 |
+
result['output'] = output_buffer.getvalue()
|
53 |
+
|
54 |
+
except Exception as e:
|
55 |
+
result['error'] = str(e)
|
56 |
+
|
57 |
+
finally:
|
58 |
+
output_buffer.close()
|
59 |
+
|
60 |
+
return result
|
61 |
+
|
62 |
@dataclass
|
63 |
class Tool:
|
64 |
+
"""Tool for data analysis"""
|
65 |
name: str
|
66 |
description: str
|
67 |
func: Callable
|
68 |
|
69 |
+
class AnalysisAgent:
|
70 |
+
"""Agent that can analyze data and execute code"""
|
71 |
|
72 |
def __init__(
|
73 |
self,
|
74 |
model_id: str = "gpt-4o-mini",
|
75 |
temperature: float = 0.7,
|
|
|
76 |
):
|
77 |
self.model_id = model_id
|
78 |
self.temperature = temperature
|
|
|
79 |
self.tools: List[Tool] = []
|
80 |
+
self.code_env = CodeEnvironment()
|
81 |
|
82 |
def add_tool(self, name: str, description: str, func: Callable) -> None:
|
83 |
"""Add a tool to the agent"""
|
84 |
self.tools.append(Tool(name=name, description=description, func=func))
|
85 |
|
86 |
+
def run(self, prompt: str, df: pd.DataFrame = None) -> str:
|
87 |
+
"""Run analysis with code execution"""
|
88 |
messages = [
|
89 |
{"role": "system", "content": self._get_system_prompt()},
|
90 |
{"role": "user", "content": prompt}
|
91 |
]
|
92 |
|
93 |
try:
|
94 |
+
# Get response from model
|
95 |
response = completion(
|
96 |
model=self.model_id,
|
97 |
messages=messages,
|
98 |
temperature=self.temperature,
|
99 |
)
|
100 |
+
analysis = response.choices[0].message.content
|
101 |
+
|
102 |
+
# Extract code blocks
|
103 |
+
code_blocks = self._extract_code(analysis)
|
104 |
+
|
105 |
+
# Execute code and capture results
|
106 |
+
results = []
|
107 |
+
for code in code_blocks:
|
108 |
+
result = self.code_env.execute(code, df)
|
109 |
+
if result['error']:
|
110 |
+
results.append(f"Error executing code: {result['error']}")
|
111 |
+
else:
|
112 |
+
# Add output and figures
|
113 |
+
if result['output']:
|
114 |
+
results.append(result['output'])
|
115 |
+
for fig in result['figures']:
|
116 |
+
results.append(f"")
|
117 |
+
|
118 |
+
# Combine analysis and results
|
119 |
+
return analysis + "\n\n" + "\n".join(results)
|
120 |
+
|
121 |
except Exception as e:
|
122 |
return f"Error: {str(e)}"
|
123 |
+
|
124 |
def _get_system_prompt(self) -> str:
|
125 |
+
"""Get system prompt with tools and capabilities"""
|
126 |
tools_desc = "\n".join([
|
127 |
f"- {tool.name}: {tool.description}"
|
128 |
for tool in self.tools
|
129 |
])
|
130 |
|
131 |
+
return f"""You are a data analysis assistant.
|
132 |
|
133 |
Available tools:
|
134 |
{tools_desc}
|
135 |
|
136 |
+
Capabilities:
|
137 |
+
- Data analysis (pandas, numpy)
|
138 |
+
- Visualization (matplotlib, seaborn)
|
139 |
+
- Statistical analysis (scipy)
|
140 |
+
- Machine learning (sklearn)
|
|
|
|
|
141 |
|
142 |
+
When writing code:
|
143 |
+
- Use markdown code blocks
|
144 |
+
- Create clear visualizations
|
145 |
+
- Include explanations
|
146 |
+
- Handle errors gracefully
|
147 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
@staticmethod
|
150 |
+
def _extract_code(text: str) -> List[str]:
|
151 |
+
"""Extract Python code blocks from markdown"""
|
152 |
+
import re
|
153 |
+
pattern = r'```python\n(.*?)```'
|
154 |
+
return re.findall(pattern, text, re.DOTALL)
|
|
|
155 |
|
156 |
def process_file(file: gr.File) -> Optional[pd.DataFrame]:
|
157 |
"""Process uploaded file into DataFrame"""
|
158 |
if not file:
|
159 |
return None
|
160 |
+
|
161 |
try:
|
162 |
if file.name.endswith('.csv'):
|
163 |
return pd.read_csv(file.name)
|
|
|
177 |
|
178 |
if not api_key:
|
179 |
return "Error: Please provide an API key."
|
180 |
+
|
181 |
if not file:
|
182 |
return "Error: Please upload a file."
|
183 |
+
|
184 |
try:
|
185 |
# Set up environment
|
186 |
os.environ["OPENAI_API_KEY"] = api_key
|
187 |
|
188 |
# Create agent
|
189 |
+
agent = AnalysisAgent(
|
190 |
model_id="gpt-4o-mini",
|
191 |
temperature=temperature
|
192 |
)
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
# Process file
|
195 |
df = process_file(file)
|
196 |
if df is None:
|
|
|
215 |
User request: {query}
|
216 |
|
217 |
Please analyze the data and provide:
|
218 |
+
1. Clear explanation of approach
|
219 |
+
2. Code with visualizations
|
220 |
+
3. Key insights and findings
|
|
|
221 |
"""
|
222 |
|
223 |
+
return agent.run(prompt, df=df)
|
224 |
|
225 |
except Exception as e:
|
226 |
return f"Error occurred: {str(e)}"
|
|
|
232 |
gr.Markdown("""
|
233 |
# AI Data Analysis Assistant
|
234 |
|
235 |
+
Upload your data file and get AI-powered analysis with visualizations.
|
236 |
|
237 |
**Features:**
|
238 |
- Data analysis and visualization
|
239 |
- Statistical analysis
|
240 |
- Machine learning capabilities
|
241 |
|
242 |
+
**Note**: Requires your own OpenAi API key.
|
243 |
""")
|
244 |
|
245 |
with gr.Row():
|
|
|
278 |
|
279 |
gr.Examples(
|
280 |
examples=[
|
281 |
+
[None, "Show the distribution of values and key statistics"],
|
282 |
+
[None, "Create a correlation analysis with heatmap"],
|
283 |
+
[None, "Identify and visualize any outliers in the data"],
|
284 |
+
[None, "Generate summary plots for the main variables"],
|
285 |
],
|
286 |
inputs=[file, query]
|
287 |
)
|